& FLOW

Design Micro Service

Architectures the
Right Way

Michael Bryzek

mike@flow.io / @mbryzek
o n Cofounder / CTO Flow

NEW YORK » InfoQ Cofounder / ex-CTO Gilt

29 A personal story

Could you change this URL from

https://foo.com/latest/bar.js to
https://foo.com/1.5.3/ bar.js ?

=» Sorry — that would take weeks; we don’t have the resources to do that.

https://foo.com/latest/bar.js
https://foo.com/1.5.3/foo.js
https://foo.com/latest/bar.js
https://foo.com/1.5.3/foo.js

It’s just a friggin URL!!!

https://www.pinterest.com/pin/262264378280617506/

=9 How does this happen?

 URL In a library

* 100s of services to update

 Some not touched In years,
requiring dependency updates

https://www.pinterest.com/pin/262264378280617506/

D Great Architecture

Scales Development Teams
Delivers Quality
Enables High Performance / Low Cost

Supports Future Features Naturally

B9 Not So Great Architecture

GOTO E SPAGHETTI CODE

Tradeoffs:

Near term velocity

Future Paralysis

http://ziogeek.com/wp-content/uploads/2013/07/spaghetti.jpg

B Design Micro Service Architectures the Right \Way

D About Me

@ Chrome File Edit View History Bookmarks People Window Help L& MR L= @ Suns524PM Q=
€, Flow Commerce, Inc. Globa Michael

& Secure https://www.flow.io T HoEHO®eENO

@ l
e FLOW Product Why Flow Our Company Careers Login @ (888) 475-FLOW (3569) WWW . g I . ‘ O m

@ Chrome File Edit View History Bookmarks People Window Help 2 & M 2 L= ®m Suns525PM Q =

Gilt Michael

@ Secure https://www.gilt.com 2 HoEOeBO

sIL'T
(I ; Search designers, products and more...

FEATURED WOMEN MEN KIDS HOME CITY TRAVEL

Free Shipping for 8 days!

GLOBAL E-COMMERCE .

NOW HAS FLOW

Today on Women's

Best of June

Sun, fun, and lots of style — your

favorite brands are back

www.flow.io

Linda Farrow

Frame your face in exclusive,
Sunday, June 25th 2017 new styles by the eyewear

label known for raising the bar

W
1
O

Let’s Start
With a few

Misconceptions

9 Misconception #1

Micro Services enable our teams to choose the best

programming languages and frameworks for their tasks

Reality:
We’ll demonstrate just how expensive this is.

Team size and investment are critical inputs.

9 Misconception #2

Code Generation is Evil

Reallity:
What’s important is creating a defined

schema that is 100% trusted.

We’ll demonstrate one technique leveraging code generation

D Misconception #3

The Event Log Must be the Source of Truth

Reallity:
Events are critical parts of an interface.

But it’s okay for services to be the

system of record for their resources.

D Misconception #4

Developers can maintain no more than 3 services each

Reallity:

Wrong metric; we’ll demonstrate where automation shines.

Flow developers today each maintain ~5 services

Weekly maintenance <5% of time

-Key————l

I Flow System |

—-low Plattorm Architecture g Gy

Data Flow |

- [
v [
Flow Console Track.flow.io .
Retail
| Website

FLOW APIs

Flow.js

Checkout Ul

1N0¥23Y)
(IE][le)

: Ecommerce
Integration Methods & Platform

Services

AP| Proxy I
I
I

+
services |
_ _ _ _ — u
v

Plugins & Cartridges

S
Y o
S 2
32
& Z g1
(¢°] -~ >
r R o OMS
()]) e 2
T o 9 i, :
§ E\ L [] . I = " I
2 . AAAA

()] . .

— Event Bus (Kinesis) I

I | 3PL/ WMS,
y Fc.

Lambda Architecture / Data Mart

Amazon Web Services

Done correctly, even things like

APl Detinition GDPR compliance can be modeled

"user": {
"description”: "Represents a single user 1in the system",
"fields": [
{ "name": "1d", "type": "string" },
{ "name": "email", "type": "string", "required": false, "annotations”: ["personal_data"] },
{ "name": "name", "type": "name", "annotations": ["personal_data"] },
{ "name": "status", "type": "user_status", "default": "active" }

|
¥

"user_form": {
"fields": [
{ "name": "email", "type": "string", "required": false, "annotations": ["personal_data"] 1},
{ "name": "password", "type": "string", "required": false, "annotations": ["personal_data"] },
{ "name": "name", "type": "name_form", "required": false, "annotations": ["personal_data"] }

1
¥

Resource Oriented

"resources": {
"10.flow.common.v@.models.user": {
"operations": [
{

"method": "GET",

"description"”: "Returns information about a specific user.",

"path": "/:1d",

"responses”: {
"200": { "type": "1io.flow.common.v@.models.user" },
"401": { "type": "unit" },
"404" . { "type": "unit" }

%

"method"”: "POST",
"description”: "Create a new user. Note that new users will be created with a status of pending and will not be able
Flow team.",
"body": { "type": "user_form" },
"responses”: {
"201": { "type": "1o.flow.common.v@.models.user" },
"401": { "type": "unit" },
"422": { "type": "1o.flow.error.v@.models.generic_error" }

W9 Definitions in Git, with Continuous Integration

Changes approved Show all reviewers
1 approving review Learn more.

° All checks have passed Hide all checks
2 successful checks

v @ Travis Cl - Pull Request Successful in 32s — Build Passed Details

v @b continuous-integration/travis-ci/pr — The Travis Cl build passed Details

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Squash and g [a4 You can also open this in GitHub Desktop or view command line instructions.

catalog... Vvalid!
currency... Valid!
error... Valid!
experience... Valid!
export... Vvalid!
feed... Vvalid!

fraud... Valid!
fulfillment... Valid!
harmonization... Valid!
healthcheck... valid!
import... Valid!
inventory... Valid!
item... Vvalid!

jsonp... Valid!
label... Valid!

D Tests Enforce Consistency

/ k%
* We keep all paths in lower case to avoid any issues with case
* sensitivity.
*/

case object LowerCasePaths extends Linter with Helpers {

override def validate(service: Service): Seq[String] = {
service.resources.flatMap { resource =>
resource.operations.
filter(op => op.path != op.path.toLowerCase).map { op =>
error(resource, op, "Path must be all lower case")

}

Goal: It should feel like one person wrote the entire API

W Tests Prevent Errors

6/20/18
6/20/18
6/20/18

6/19/18

6/19/18

6/19/18

mbryzek
mbryzek
mbryzek

mbryzek

mbryzek

mbryzek

flow/api:0.5.60
flow/api:0.5.60
flow/api:0.5.60

flow/api:0.5.59

flow/api:0.5.59

flow/api:0.5.58

Verify potentially breaking changes

during APl Design Phase

model consumer_invoice required field added: attributes
model consumer_invoice_form optional field added: attributes

resource consumer_invoice_url operation GET /consumer/invoice/tokens/:token/type/:type
attribute added: linter

resource consumer_invoice operation added: DELETE
/:organization/consumer/invoices/:key

resource consumer_invoice operation PUT /.organization/consumer/invoices/:key response
added: 200

enum added: consumer_invoice_document_type

https://app.apibuilder.io/history?org=flow&app=api

APl Implementation Supported by Code Generation

$ apibuilder update --app user

Fetching code from https://api.apibuilder.1io
flow/user/latest/play_2_x_routes...

api/conf/user.routes: changed

flow/user/latest/play_2_6_client...
ap1/app/generated/FlowUserV@Client.scala: changed

flow/user/latest/play_2_6_mock_client...

api/test/generated/FlowUserV@OMockClient.scala: changed

Copy1lng updated code
lay_2_x_routes => /web/flowcommerce/user/api/conf/user.routes

lay_2_6_client => /web/flowcommerce/user/api/app/generated/FlowUserV@Client.scala

lay_2_6_mock_client => /web/flowcommerce/user/api/test/generated/FlowUserVOMockClient.scala

B Code Generation: Routes

/users/:1d controllers.Users.getById(1id: String)

/users controllers.Users.post()

Guarantee that API operations are actually defined
User friendly paths

Consistent naming for methods

Code Generation: Client

0 post(

userForm: do.flow.user.vO.models.UserForm

requestHeaders: [()}] =
) (ec: scala.concurrent.ExecutionContext): scala.concurrent.Future[io.flow.common.v@.models.User] = {
payload = play.api.libs.json.Json.toJson(userForm)
_executeRequest(body = Some(payload), requestHeaders = requestHeaders).map {
g r.status == L => {

root.7o0.flow.user.v0.Client.parsedson(

r, _.validate[io.flow.common.vO.models.User |
)
}
r r.status == => io.flow.user.v0.errors.UnitResponse(r.status)
E RS Eatush== =5 io.flow.user.v0.errors.GenericErrorResponse(r)
r=> io.flow.user.v0.errors.FailedRequest(
r.status {r.status}

B Code Generation: Mock Client

post(

userForm: 1o.flow.user.v0@.models.UserForm
requestHeaders: [()] =

) (ec: scala.concurrent.ExecutionContext): scala.concurrent.Future[io.flow.common.v@.models.User]| = {
scala.concurrent.Future.successful {

i0o.flow.common.v0@.mock.Factories.makeUser ()

Mock and Client from Same Source

Enables High Fidelity, Fast Testing

B Code Generation: Clients

The system of record IS the API specification

Code generation ensures that we actually adhere to the spec

Provide many common languages for our users

[https://app.apibuilder.io/generators/]

=9 Now Let's Implement

post() = Anonymous.async(parse.json) { request =>
Future A
usersDao.create(request. request.body.as|[UserForm])
Left(errors) => {

(Json.toJson(Validation.errors(errors)))

Right (newUser) => {

(Json.toJson(newUser))

Goal: Code we actually write is simple, consistent

W9 Database Architecture

Each micro service application owns its database
No other service is allowed to connect to the database

Other services use only the service interface (APl + Events)

CLI as single interface for infra and

_ Create a Database common development tasks

$ dev rds --app test

Confirm settings:
- db_name: testdb
- storage: 100
- db_1instance_class: db.tZ.medi1um
- db_1nstance_1d: testdb20180623

Proceed? (y/n): I

=9 Define storage reguirements in metadata

"attributes": [

Describe “scala” requirements t
name": "scala",
"value": {
Describe “psql” requirements "package”: "db.generated",

"id_generator": {
"prefix": "usr"

Code generate the table definition

Code generate the Data Access Object

"name": "psqgl”,

"value": {
"pkey": "id",
"indexes": [

{ "fields": ["email"] }

Note data tier independent from API,

Just uses same toolchain

B Code generation: Create a Table

create table users (
1d text primary key check(util.non_empty_trimmed_string(id)),
ematl text check(util.null_or_non_empty_trimmed_string(email)),
first_name text check(util.null_or_non_empty_trimmed_string(first_name)),
last_name text check(util.null_or_non_empty_trimmed_string(last_name)),
status text not null check(util.non_empty_trimmed_string(status)),
created_at timestamptz not null default now(),
updated_at timestamptz not null default now(),

updated_by_user_1id text not null check(util.non_empty_trimmed_string(updated_by_user_id)),
hash_code bigint not null

i 5

create i1ndex users_email_1idx on users(email);

select schema_evolution_manager.create_updated_at_trigger('public’', 'users');

Consistent checks, metadata

Enable global features like ‘hash _code’ to minimize writes

B9 Code generation: Scala Class

def insert(
c: Connection,
updatedBy: UserReference,
form: UserForm
: String = {
val 1id = randomId()

def findAll(
ids: Option[Seq[String]] = None,
email: Option[String] = None,
hasEmail: Option[Boolean] = None,
Llimit: Long,

offset: Long = 0,
orderBy: OrderBy = OrderBy("users.id")

) (
implicit customQueryModifier: Query => Query = { q => q }

): Seqg[User] = {

bindQuery(InsertQuery, form).
bind("1d", 1d).
bind("updated_by_user_id", updatedBy.1d).
anormSql .execute()

1d

Normalize access to DB

Ensure proper indexes exist from start

D Automated Tests

identifiedClient(

user: UserReference =

): Client = {

Client(
wsClient
port

defaultHeaders = authHeaders.headers(AuthHeaders.user(user))

Use the generated mock client

B Test Resource Operations

in {
user = createUser ()
await(
identifiedClient() .users.getById(user.id)

) must equal(user)

in {

expectNotFound/(

identifiedClient() .users.getById(UUID.randomUUID.toString)

Use the generated mock clients to write simple tests

Time to Deploy

B Continuous Delivery

“Continuous Delivery is a

prerequisite to managing micro

service architectures”

--@mbryzek

B Continuous Delivery

Deploy triggered by a git tag
Git tags created automatically by a change on master (e.g. merge PR)

100% automated, 100% reliable

B Continuous Delivery is Critical

delta

Dashboard

Projects

Event Log

Subscriptions

flow/demandware
flow/docs
flow/order-messenger
flow/return
flow/catalog
flow/dependency-www
flow/dependency-api

flow/inventory

mbryzek@alum.mit.edu ~ Search Q

13 hours ago
1 day ago
1 day ago
1 day ago
1 day ago
1 day ago
1 day ago

1 day ago

Running 0.3.97 (1)
Running 0.6.42 (2)
Running 0.1.30 (1)
Running 0.2.29 (2)
Running 0.10.17 (2)
Running 0.6.32 (2)
Running 0.6.32 (1)

Running 0.3.38 (2)

https://github.com/flowcommerce/delta

29 Auto Deploy on New Commit on Master

Build Desired state last set State
flow/user seconds ago Transitioning from 0.4.54 (2) to 0.4.55 (2)
Desired State Last State
2 instances 2 instances

Updated seconds ago Updated seconds ago

B Microservice Infrastructure — keep it simple

builds:
- root:
instance.type: t2.small
port.container: 9000
port.host: 6021
version: 1.3

B Standard Health Checks

$ curl --silent https://user.api.flow.io/_internal_/healthcheck | jq .

"models": {
"healthcheck": {
"fields": [
{ "name": "status", "type": "string", "example": "healthy" }

"resources": {
"healthcheck": {
"path": "/_internal_ ",
"operations": [
{
"method"”: "GET",
"path": "/healthcheck",
"responses": {
"200": { "type": "healthcheck" },
"422": { "type": "1io.flow.error.v@.models.generic_error" }

“We have an amazing API, but
please subscribe to our event

streams instead.”

- Principles of an Event Interface

First class schema for all events
Producers guarantee at least once delivery

Consumers implement idempotency

Flow:
- End to end single event latency ~ 500 ms

- Based on postgresql — scaled to ~1B events / day / service

D Bvents: Approach

Producers:

* Create a journal of ALL operations on table

 Record operation (insert, update, delete)

* On creation, queue the journal record to be published
* Real time, async, we publish 1 event per journal record

* Enable replay by simply requeuing journal record

D Events: Approach

Consumers:

* Store new events in local database, partitioned for fast removal
* On event arrival, queue record to be consumed
* Process incoming events in micro batches (by default every 250ms)

* Record failures locally

9 Events: Schema First

"unions": {
"user_event": {

1 model / event ::i;rs)z;r?ireator": "discriminator",
{ "type": "user_upserted" },
o . { "type": "user_deleted" }
N events In one union type .
|
1 union type / stream odelers |
"user_upserted": {
o "fields™: I
Stream owned by 1 service { "name": "event_id", "type": "string" },

{ "name": "timestamp”, "type": "date-time-1so8601" },
{ "name": "user", "type": "io.flow.common.v@.models.user" }

Most services define exactly 1 stream .

"user_deleted": {
"fields": [
{ "name": "event_id", "type": "string" },
{ "name": "timestamp", "type": "date-time-1s08601" },
{ "name": "user"”, "type": "io.flow.common.v@.models.user" }

D Bvents: Schema Linter

For event models (models ending with 'upserted', 'deleted'), validate:

k
k

* a. second field is timestamp
* b. 1f 'organization', next

%

c. if 'number', next
case object EventModels extends Linter with Helpers {

override def validate(service: Service): Seql[String] = {
service.models.
filter(m => !'ignored(m.attributes, "event_model")).
filter(isEvent).
flatMap(validateModel)

9 Producers: Database Joumnal

Document retention period "Journal": {
"interval”: "daily",

Code generate journal "natention”: 3

Use partitions to manage storage

select journal.refresh_journaling('public', 'users', 'journal', 'users');
select partman.create_parent('journal.users', '"journal_timestamp', "time', 'daily');

update partman.part_config

set retention = '3 day’',
retention_keep_table = false,
retention_keep_index = false
parent_table = '"journal.users’;

https://github.com/gilt/db-journaling

2 Producers: Streams

= queue.producer|[UserEvent] ()

Reflection used to generate stream name

io.flow.v0.user event.json

=9 Producing an Event

override def process(record: UserVersion)(
implicit ec: ExecutionContext
): Unit = {
record. journalOperation match {
case ChangeType.Insert | ChangeType.Update => {

stream.publish(. . .
UserUpserted(Note the UserVersion class which is

eventld = eventIdGenerator.randomId(),

timestamp = DateTime.now, also code generated.
user = record.userVersion.user

)
) Guarantees that all code in all

}
services looks the same.

case ChangeType.Delete => {
stream.publish(
UserDeleted(
eventld = eventIdGenerator.randomId(),
timestamp = DateTime.now,
1d = record.userVersion.user.1id

Producers. |esting

user = createUser ()

eventuallyInNSeconds () {
.all.
flatMap(_.js.asOpt[UserUpserted]).
find { e =>
e.id == user.id && e.email == user.email && e.name == Name ()
o
get

S Consumers: Processing Incoming Events

override def process(json: JsValue) = {
json.as[UserEvent] match {
case UserUpserted(_, _, user) => {
usersDao.upsertByld(
Constants.SystemUser,
UserForm(
1d = user.1d,
email = user.email,
firstName = user.name.first,
lastName = user.name. last

)
)
¥

case UserDeleted(_, _, user) => {
usersDao.deleteById(Constants.SystemUser, user.id)

¥

B Consumers: Testing

val event = Factories.makeUserUpserted()
producer.publish(event)

val user = eventuallyInThreeSeconds {
usersDao.findByIld(event.user.1d).get

¥

Factories classes generated from the API Spec

Dependencies

Keeping things up to date

- Dependencies

Goal: Automatically update all services to latest dependencies

* Critical for security patches / bug fixes in core libraries
 Takes hours (not weeks or months)
 Same process for internally developed libraries and open source

* Flow: we upgrade all services every week to latest dependencies

- Dependencies: Tracking

dependency

Recommended Upgrades

Projects
Libraries
Binaries
Resolvers

Subscriptions

https://dependency.flow.io/

Date

6/24/18

6/24/18

6/24/18

6/24/18

6/23/18

6/23/18

6/23/18

Project
user
beacon
billing
feature
link
location

secret

mbryzek@alum.mit.edu ~

Name
io.flow.lib-validation
io.flow.lib-validation
io.flow.lib-validation
io.flow.lib-validation
io.flow.lib-play-play26
io.flow.lib-play-play26

io.flow.lib-play-play26

Search

Current

0.0.17

0.0.17

0.0.17

0.0.17

0.4.73

0.4.73

0.4.73

https://github.com/flowcommerce/dependency

Q

Recommended
0.0.18
0.0.18
0.0.18
0.0.18
0.4.74
0.4.74

0.4.74

Recommendations

Name

io.flow.lib-validation

Dependencies
Name Version
sbt 118
scala 2125
Library

com.gilt.sbt.sbt-newrelic
com.typesafe.play.play-json
com.typesafe.play.play-json-joda
com.typesafe.play.sbt-plugin

io.flow.lib-event-sync-play26

Current

0.0.17

File

Recommended

0.0.18

project/build.properties

build.sbt

Version

0.2.4

2.6.9

26.9

2.6.15

0.2.92

Cross built for

2.12

2.2

2:12

File
project/plugins.sbt
build.sbt

build.sbt
project/plugins.sbt

build.sbt

https://dependency.flow.io/
https://github.com/flowcommerce/dependency

- Dependencies: Updating

amm scripts/upgrade/upgrade.sc

19 112 Open v 28,098 Closed Visibility ~

N

N

3y

y

n

y

1y

n

n

flowcommerce/session Upgrade sbt to 1.1.5, scala to 2.12.6, play to0 2.6.13 ¢
#276 opened 5 minutes ago by mbryzek

flowcommerce/lib-postgresql Upgrade sbt to 1.1.5, scala to 2.12.6, play to 2.6.13 v
#88 opened 5 minutes ago by mbryzek

flowcommerce/lib-event-sync Upgrade sbt to 1.1.5, scala to 2.12.6, play to 2.6.13 ¢
#296 opened 5 minutes ago by mbryzek

flowcommerce/installment Upgrade sbt to 1.1.5, scala to 2.12.6, play to 2.6.13 *
#120 opened 6 minutes ago by mbryzek

flowcommerce/lib-event Upgrade sbt to 1.1.5, scala to 2.12.6, play to 2.6.13 ¢
#339 opened 6 minutes ago by mbryzek

flowcommerce/lib-csv Upgrade sbt to 1.1.5, scala to 2.12.6, play to 2.6.13 ¢
#17 opened 6 minutes ago by mbryzek

flowcommerce/lib-logistics Upgrade sbt to 1.1.5, scala to 2.12.6, play to 2.6.13 ©
#49 opened 6 minutes ago by mbryzek

flowcommerce/lib-experience-picker Upgrade sbt to 1.1.5, scala to 2.12.6, play to 2.6.13 ¢
#66 opened 6 minutes ago by mbryzek

flowcommerce/lib-query Upgrade sbt to 1.1.5, scala to 2.12.6, play to 2.6.13 ¢
#140 opened 6 minutes ago by mbryzek

flowcommerce/lib-play Upgrade sbt to 1.1.5, scala to 2.12.6, play t0 2.6.13 v
#217 opened 6 minutes ago by mbryzek

Organization ~

Sort ~

- Dependencies & Continuous Delivery

Deploy Once the Build Passes

- Summary: Critical Decisions

Q Design schema first for all APls and Events

— consume events (not API) by default

Q Invest in automation

— deployment, code generation, dependency management

Q Enable teams to write amazing and simple tests

— drives quality, streamlines maintenance, enables continuous delivery

& FLOW

Thank You!

Go forth and Design Micro Service Architectures the Right Way

Michael Bryzek

mike@flow.io / @mbryzek
Cofounder / CTO Flow
Cofounder / ex-CTO Gilt

QCon

NEW YORK + InfoQ We’re hiring: https://www.flow.io/careers

