
Design Micro Service
Architectures the

Right Way

Michael Bryzek
mike@flow.io / @mbryzek

Cofounder / CTO Flow

Cofounder / ex-CTO Gilt

A personal story

Could you change this URL from

https://foo.com/latest/bar.js to

https://foo.com/1.5.3/ bar.js ?

è Sorry – that would take weeks; we don’t have the resources to do that.

https://foo.com/latest/bar.js
https://foo.com/1.5.3/foo.js
https://foo.com/latest/bar.js
https://foo.com/1.5.3/foo.js

https://www.pinterest.com/pin/262264378280617506/

It’s just a friggin URL!!!

How does this happen?

• URL in a library
• 100s of services to update
• Some not touched in years,

requiring dependency updates

https://www.pinterest.com/pin/262264378280617506/

Great Architecture

Scales Development Teams

Delivers Quality

Enables High Performance / Low Cost

Supports Future Features Naturally

Not So Great Architecture

Tradeoffs:

http://ziogeek.com/wp-content/uploads/2013/07/spaghetti.jpg

Near term velocity

Future Paralysis

Design Micro Service Architectures the Right Way

About Me

www.flow.io

www.gilt.com

Let’s Start

With a few

Misconceptions

Misconception #1

Micro Services enable our teams to choose the best

programming languages and frameworks for their tasks

Reality:
We’ll demonstrate just how expensive this is.

Team size and investment are critical inputs.

Misconception #2

Code Generation is Evil

Reality:

What’s important is creating a defined

schema that is 100% trusted.

We’ll demonstrate one technique leveraging code generation

Misconception #3

The Event Log Must be the Source of Truth

Reality:

Events are critical parts of an interface.

But it’s okay for services to be the

system of record for their resources.

Misconception #4

Developers can maintain no more than 3 services each

Reality:

Wrong metric; we’ll demonstrate where automation shines.

Flow developers today each maintain ~5 services

Weekly maintenance <5% of time

Flow Commerce Architecture
Flow Platform Architecture

Ex
te

rn
al

 D
at

a P
ro

vid
er

s
(e

.g
.,

FX
, I

P
Ge

o,
 II

N/
BI

N,
 e

tc
.)

Catalog Payment Inventory Orders 100+
services

Event Bus (Kinesis)

Lambda Architecture / Data Mart

API Proxy

OMS

3PL / WMS,
Etc.

Ecommerce
Platform

Retail
Website

FLOW APIs

Flo
w

.js

Flow Console Track.flow.io
M

ic
ro

se
rv

ic
es

Integration Methods &
Services

Client Platform

Fulfillment

Shopify Magento

SFCC Solidus

Plugins & Cartridges

Direct Integrations

Checkout UI

Flow System
Client System
3rd Party Data
Data Flow

Key

FTP Webhook

Kinesis Partner
API

Amazon Web Services

Client
Checkout

API Definition Done correctly, even things like
GDPR compliance can be modeled

Resource Oriented

Definitions in Git, with Continuous Integration

Tests Enforce Consistency

Goal: It should feel like one person wrote the entire API

Tests Prevent Errors

https://app.apibuilder.io/history?org=flow&app=api

Verify potentially breaking changes
during API Design Phase

API Implementation Supported by Code Generation

Code Generation: Routes

Guarantee that API operations are actually defined

User friendly paths

Consistent naming for methods

Code Generation: Client

Code Generation: Mock Client

Mock and Client from Same Source

Enables High Fidelity, Fast Testing

Code Generation: Clients

The system of record IS the API specification

Code generation ensures that we actually adhere to the spec

Provide many common languages for our users

[https://app.apibuilder.io/generators/]

Now Let’s Implement

Goal: Code we actually write is simple, consistent

Database Architecture

Each micro service application owns its database

No other service is allowed to connect to the database

Other services use only the service interface (API + Events)

Create a Database
CLI as single interface for infra and
common development tasks

Define storage requirements in metadata

Describe ”scala” requirements

Describe “psql” requirements

Code generate the table definition

Code generate the Data Access Object

Note data tier independent from API,

Just uses same toolchain

Code generation: Create a Table

Consistent checks, metadata

Enable global features like ‘hash_code’ to minimize writes

Code generation: Scala Class

Normalize access to DB

Ensure proper indexes exist from start

Automated Tests

Use the generated mock client

Test Resource Operations

Use the generated mock clients to write simple tests

Time to Deploy

Continuous Delivery

“Continuous Delivery is a

prerequisite to managing micro

service architectures”

--@mbryzek

Continuous Delivery

Deploy triggered by a git tag

Git tags created automatically by a change on master (e.g. merge PR)

100% automated, 100% reliable

Continuous Delivery is Critical

https://github.com/flowcommerce/delta

Auto Deploy on New Commit on Master

Microservice Infrastructure – keep it simple

Standard Health Checks

Events

“We have an amazing API, but

please subscribe to our event

streams instead.”

Principles of an Event Interface

First class schema for all events

Producers guarantee at least once delivery

Consumers implement idempotency

Flow:

- End to end single event latency ~ 500 ms

- Based on postgresql – scaled to ~1B events / day / service

Events: Approach

Producers:
• Create a journal of ALL operations on table

• Record operation (insert, update, delete)

• On creation, queue the journal record to be published

• Real time, async, we publish 1 event per journal record

• Enable replay by simply requeuing journal record

Events: Approach

Consumers:
• Store new events in local database, partitioned for fast removal

• On event arrival, queue record to be consumed

• Process incoming events in micro batches (by default every 250ms)

• Record failures locally

Events: Schema First

1 model / event

N events in one union type

1 union type / stream

Stream owned by 1 service

Most services define exactly 1 stream

Events: Schema Linter

Producers: Database Journal

Document retention period

Code generate journal

Use partitions to manage storage

https://github.com/gilt/db-journaling

Producers: Streams

Reflection used to generate stream name

io.flow.v0.user_event.json

Producing an Event

Note the UserVersion class which is
also code generated.

Guarantees that all code in all
services looks the same.

Producers: Testing

Consumers: Processing Incoming Events

Consumers: Testing

Factories classes generated from the API Spec

Dependencies

Keeping things up to date

Dependencies

Goal: Automatically update all services to latest dependencies
• Critical for security patches / bug fixes in core libraries

• Takes hours (not weeks or months)

• Same process for internally developed libraries and open source

• Flow: we upgrade all services every week to latest dependencies

Dependencies: Tracking

https://dependency.flow.io/

https://github.com/flowcommerce/dependency

https://dependency.flow.io/
https://github.com/flowcommerce/dependency

Dependencies: Updating

Dependencies & Continuous Delivery

Deploy Once the Build Passes

Summary: Critical Decisions

Design schema first for all APIs and Events
– consume events (not API) by default

Invest in automation
– deployment, code generation, dependency management

Enable teams to write amazing and simple tests
– drives quality, streamlines maintenance, enables continuous delivery

Thank You!
Go forth and Design Micro Service Architectures the Right Way

Michael Bryzek
mike@flow.io / @mbryzek

Cofounder / CTO Flow

Cofounder / ex-CTO Gilt

We’re hiring: https://www.flow.io/careers

