
7 strategies for scaling

product security

QCon 2018 – New York City

Angelo Prado, Senior Director

Jet.com | Walmart

about me
12+ years of experience in software development and Leading

Product Security teams at Jet.com, Salesforce and Microsoft

4 times Black Hat Speaker, co-author of 10+ CVEs including

the BREACH attack (SSL Side Channel)

Currently leading a product security team across two continents,

assistant professor in Spain at Comillas University, advising

security startups and non-profits

earlier career attempts…

what is

product security

Product Security teams are the guardians of customer data, fixing

and preventing security vulnerabilities. Inclusive of much more than

just code. Product Security covers the full service and how your

customers use and interact with it securely. It goes beyond securing

the underlying software and includes operational responsibilities.

why do we need

Product Security?

core
mission

prevent vulnerabilities build effective automation

perform security reviews harden the product

product security?

who needs

you do.

we do.

Security is reflected in how products are built and operated.

Product Security should be engaged with customers and partners.

Engineering teams must have a consistent interpretation of the

security posture and secure development lifecycle.

7 strategies to scale
Building Product Security from the ground up

prioritize relationships

and establish a non-

blocking function

SERVICE

CATALOG

design

reviews

automation

services

security

testing
vulnerability

management

training &

research

Product Security should be a

lean, effective, non-

blocking technical

assessment function

rules of
engagement

prioritize relationships over bugs
The number of teams and individuals you interact with will keep growing – In

connecting with other human beings, align priorities and exercise empathy

be thoughtful about prioritization and risk
Security isn’t always #1 - If you want to build a relationship with someone, you

need to know their priorities. Develop a narrative that resonates with them

be pragmatic and solicit feedback
Security should not block shipping, and it shouldn’t be reactive. We triage

vulnerabilities based on severity, but not all bugs are considered equal. Listen

to the teams you support and proactively seek improvement importunities

In collaboration with Tom Maher

Even the most professional, security-

conscious developers take it personally

occasionally. It's not their fault. A regular

drumbeat of "you're doing it wrong" will

discourage anyone. Developers usually

want to do the right thing - Promote

thoughtful solutions that scale and balance

technical capabilities with product usability

the hacker
mindset

aptitude

open source contributions,

research, publications and

bug bounty recognitions

breaker mindset
substantial knowledge of

application-level attacks and flaws

builder mindset
strong knowledge of software

development, browsers, cloud services,

network, crypto and defense strategies

soft skills

effective communication skills

and the ability to influence and

communicate with engineers

Run security like a business:

Sorry, Mr. Hacker, this just isn't working out...

invest in vulnerability

management, metrics

and reporting

vuln
management

the fix is validated in an

staging environment,

including different variants

verify fix

the fix is released to

production and required

comms are handled

ship it!

the engineering team

works out a fix, assisted by

the security contact

work on a fix

a vulnerability is found, an

issue is created and

assigned to the team

backlog

deliver bug

agile
workflows

security owner
each product security engineer

owns a portfolio of applications

proactive signoff
product teams are notified of any

security issues and provided with

hardening recommendations

design review
security owners are responsible

for attending design reviews

continuous testing
security owners deploy automation

and perform gray-box testing

threat modeling
security owners identify

weaknesses and mitigations

vulnerability
notifications

the priority, description of the vulnerability, and the

remediation target date should be emphasized

usability is a key

there should be a clear call to action on any

vulnerability, indicating proposed remediation

make it actionable

ensure the right engineering team and security

owner receive notifications for their products

make it relevant

prioritize
responsibly

P1
P2

P0
Critical Priority (P0) – 7 days SLA

Medium Priority (P1) – 30 days SLA

Low Priority (P2) – 60 days SLA

SLA
process

starts on delivery
only after the right product team has been identified

and their engineers notified

resets if misrouted
teams should not be penalized for incorrect delivery

requires exception workflow
engineering manager and security manager approval is required

if a security issue cannot be remediated within the agreed SLA

vulnerability
management

01

02

03

04

05

06

07
01 – deliver bug

02 – work on a fix

03 – SLA is due

07 – fixed!

05 – manager

approves

04 – exception requested

06 – security

approves

track
release progress

30

24

43

these are bugs where no action has been taken

open bugs

bugs actively worked on

in progress

fixed & verified

resolved

intake time /
time to resolution

4.3

2.5

3.5

4.5

2.4

4.4

1.8

2.8

2

2

3

5

0 2 4 6 8 10 12 14

team 4

team 3

team 9

team 7

New

In Progress

Fixed

vulnerability lifetime in
production

20d

15d

18d

22d

Q1 Q2 Q3 Q4

measures time since a team starts

working on a bug until a fix is

deployed

>

starts when a vulnerability is introduced

in production, at deployment – this

metric measures the effectiveness of

your product security program.

>

cross-referenced with pull request size,

it can help understand complexity and

exposure

>

SLA adherence
benchmarks

team a team b team c team d team d team f team g team h

highlights teams

requiring assistance

recognizes teams

that prioritize security

SLA trends
over time

Q2 17 Q3 17 Q4 17 Q1 18 Q2 18 Q3 18

critical issues

all issues

low priority

Benchmark by
vulnerability type

XSS 66%

Session Management 83%

Authorization 91%

SQL Injection 44%

Information Disclosure 59%

developers received

security training90%

teams have automated coverage

SCA | RTA | DAST 73%

automate

all the things

Complexity is the enemy of security:

Secure by default or die not actually trying

scaling source
code reviews

98%we cannot

review

of check-

ins

of security vulnerabilities

can be automatically
detected

40%+

vulnerability
demographics

low-

hanging

fruit
testing required

manual

discovery

possible

auto

vuln
sources

penetration

testing

20%
automation

and tooling

35%

bug bounty

programs

40%
regressions

5%

CI/CD
integration

analyzes

check-ins

automatically

log issues

manual

validation

types of
automation

static code analysis
analyzes source code flows and

incremental check-ins with known rules

dynamic analysis
capable of testing web service and

application endpoints in production

runtime self-protection
understands when an application’s normal

flow is being exercised by a malicious actor

actual vulnerability

open source
software

A solid third-party library program is required to review exploitable

vulnerabilities and dependencies. Monitor CVEs and public exploits.

Vulnerabilities in Third-Party Libraries

successful
automation

not actual vulnerabilities

false positives

things that are technically valid but we are willing to

live with due to mitigating controls or exploitability

acceptable risk

Important, exploitable vulnerabilities

issues we care about

Invest in

product hardening

awkwardness

That period with an API

after you know what you

can do but before you

know what you should do

The Kaminsky Dictionary

nailing the
fundamentals

01
HSTS & CSP
HTTP Strict Transport Security

and Content Security Policy

03
Secret Management
Storing secrets securely

02
Device Fingerprinting
Stopping account take-over attempts and

using second-factor Auth smartly

04
Proactive Controls
Providing users and admins with

management controls and visibility

reducing the
attack surface

HSTS, CSP & Expect-CT
Ensuring that all requests are done with strict transport

security and that rogue certificates are not being used

(certificate transparency). Content Security Policy enables

us to filter out insecure content, avoid referrer leakage

and in general block malicious JavaScript from executing

secret
management

identify secrets
use rules & regular expressions

implement automatic validation

store securely
key management system

(key vault with HSM)

rotate secrets
automatically perform key rotation

session
management

www.nsa.gov

Login

History

Device &

Location

Apps / oAuth

Active

Sessions

device
fingerprinting

Proper device fingerprinting combined with behavioral and geolocation analytics

enables you to perform contextual two-factor authentication via SMS or one-

time links / tokens via email, reducing false negatives and false positives

smart and effective implementation

fingerprints are stored over time and

attached to a given user identity

linked to the user

prioritize features with a higher weight,

more specific to your users

unique

understand that certain capabilities for

the user-agent can change

adaptive

controlsproactive

Define Security Requirements

Leverage Security Frameworks

Secure Database Access

Validate Inputs & Escape Data

Enforce Access Controls

Protect Data at Rest & in Transit

Implement Secure Logging

Handle Errors & Exceptions

create a mature

education & awareness

program

threat modeling

Learn to think like a hacker and identify

threats and security objectives. Identify

flows, mitigations and make informed

decisions about residual risk.

self-guided training

deliver secure coding guidelines that are

relevant to the our organization’s

languages and frameworks

at a minimum, common attack patterns,

secure storage, cloud security and secure

feature design should be covered

▪ Clear secure coding guidelines

▪ Real-life libraries & frameworks

▪ Previous vulnerability examples

▪ Actionable code snippets

Keep it relevant! i.e. NodeJS developers

don’t need to know about XML injection

and heap overflow exploitation

classroom training

security

champions

shared accountability

programs like this help you

scale as engineering

organizations outnumber

security engineers

Recognize and reward good

behavior across all roles

leverage the collective

skills of the research

community

why do I need a

Bug Bounty Program

Everything fails.

Even things that

make everything

fail.
Dan Kaminsky

launching a
bounty program

scope
what to include as your

targets and how to frame it

rewards
how to reward

competitively

recruiting
who to invite to your

program and when

how to maintain hackers

interested over time

engagement

a global
community

20%

20%

30%

10%

20%

Over 170,000 hackers participating

Over 70,000 vulnerabilities found

Over $30 million paid in bounties
Data as of June 2018
Source: HackerOne

engage your top

researchers

Fly them to Vegas and keep them

hydrated. Be transparent and

overcommunicate. Keep them happy. Fly

them to your HQ. Recruit them if

necessary. Be prompt, reasonable

and technical. Run recurring

promotions and challenges.

Private programs enable you to increase

signal to noise ratio. VIP programs drive

retention. Consider researcher circles for

knowledge sharing. Recruit from active

programs. Reward competitively. Defuse

escalations / disclosure. Resource your program.

deploy a solid SDL

and maturity model

six steps for
a good SDL

design
Threat Modeling

Design Reviews

build
Static Code Analysis

Code Reviews

learn and refine
Retrospective

Planning

verify
Penetration Testing

ownership
Patch Management

Remediation

Pen-testing

release
Dynamic Testing

Bug Bounty

maturity model
evidence-based framework for evaluating the overall

security stance of a business unit or new acquisition.

Provides an authoritative and consistent roadmap for the

advancement of a the organization’s overall product

security posture. Should be meaningful and objective.

Another day, another layer of abstraction

maturity
model

level 1 – initial

Application Login/Admin Interface Inventory – Continuous Dynamic

Application Scanning – Customer Data Inventory – HTTPS By

Default – Legacy Source Code Review & Remediation – Product

Security 3rd Party Assessment – Strong Password Hashing

1

Q1 Y1 Q3 Y1 Q1 Y2 Q2 Y2 Y3+

maturity
model

level 2 – defined

Basic Logging for Security Events – Client Software

is Signed – Encryption keys not stored in source

control – Security Requirements for New Features

and Designs – NGWAF deployed for Web + API

endpoints – In-House Manual Testing of Codebase /

App – No "Roll-your-own" Cryptography – Security

Tools Run Against Codebase / App On Release –

Strong Session Management (AuthN/AuthZ) – Strong

Encryption Standards

2

Q1 Y1 Q3 Y1 Q1 Y2 Q2 Y2 Y3+

3

Q1 Y1 Q3 Y1 Q1 Y2 Q2 Y2 Y3+

maturity
model

Level 3 – managed

Enhanced Application Logging – HTTPS-Only

(HSTS) – Inventory of open source – SLA + Signoff

or Equivalent Control (90% > Adherence) – Source

Code Check-in Monitoring – Strong Multitenancy

Controls – Multi-factor Authentication – Strong

Secrets Storage – Strong Session

Authentication/Authorization – Threat Modeling of

New Features – Role-Based Access Control

maturity
model

4

Q1 Y1 Q3 Y1 Q1 Y2 Q2 Y2 Y3+

level 4 – mature and automated

Static Code Analysis at Check-in time – Runtime and

Dynamic Analysis – APIs must support multi-scope

tokens – Bug Bounty Program Coverage – Code

Signing – Continuous External App Scanning –

Field-level Authenticated Encryption – Integrated

Automated Security – Testing with QA Process –

Device Fingerprinting – Test Key/Credential Rotation

5

Q1 Y1 Q3 Y1 Q1 Y2 Q2 Y2 Y3+

maturity
model

Built-In Honeypot / Indicators

Automated OSS Coverage

HSM and Device Fingerprinting

level 5 – optimizing

Behavioral Anomaly Detection

Usage of App Containers

sample
scorecard

security

control
initial defined mature optimizing

HTTPs by default

Strong Session

Management

Multi-Factor

Authentication

Bug Bounty

Program

Credential

Rotation

the last 0day is in captivity – the galaxy is at peace

thank you !

* you guys were great

angelpm@gmail.com

PradoAngelo

LinkedIn.com/in/angeloprado

contact

Check out my SSL Research:

BreachAttack.com

