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APPNEXUS

is an internet technology company

that harnesses data and machine learning
to power the world’s largest digital
audience platforms.
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Internet Scale
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* Process 400 trillion audience
segments per day

Data processing
highlights

» 5 million records processed concurrently
under <10 milliseconds

* Tens of millions of records are
processed/Aggregated/priced/algorithms
applied in near real-time

* Leverages the best possible data to

make the best decision in real-time

* Global scaled to be economical,
resilient and expandable ‘“
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Managing failure

e Preventitin the first place

= Unit/Integration tests
= Canary releases

e When it happens, recover quickly
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Ways we falil

e Data distribution unreliability
e C woes
e DDOSing ourselves
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Handling bad data

e Good news: our systems deliver object updates to
thousands of servers around the world in under two
minutes!

e Bad news: our systems can deliver crashy data to
thousands of servers around the world in under two
minutes!
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Handling bad data

Validation engines: run a
copy of the production app,
see if it crashes before
distributing data globally
This can still fail in bad ways:

= VE version not aligned
with production

= Time-based crashes -II
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Handling bad data

e Feature switches: AN_HOOK
e Roll back time! Prevent distribution past a timestamp
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C woes

e No exceptions in C!
® core_me maybe
= Catch signal, throw out request, return to event
loop

= Flipped off on some instances so we can get a
backtrace
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Packrat

e Home grown data router
e Transform, buffer, compress, forward
¢ Transformations: message format, sharding, sampling,

filtering
= Message formats: protobuf, native x86 format, json
= (Rolling your own serialization format is probably a
bad idea)

e High volume disk throughput
e Guaranteed message delivery
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Packrat protocol

e Group by like type
e HTTP post
e Batch

m Prefer to send full buffers
m Fall back to 10s limit

e Snappy compress everything
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Packrat failure handling

e Request fails: write it to disk
® repackd

m separate process running on the instance that will
continually read failed rows from disk, retry
sending them

= if the retry fails, write to disk, do it all again
e Prone to nasty failure scenarios
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Bad data

e |f a schema evolution diverges in prod, we will crash
e Because of our failure handling mechanisms, a single
bad message can machine gun an entire datacenter
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Packrat failure handling

e Because we buffer data in outing requests, we
send back a 200 OK before the a message is
sent downstream or written to disk

e \What about data in memory when packrat

crashes?
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Packrat failure handling

e Write-ahead log: write every (compressed) incoming
request to disk for a 5 minute window

e On startup, replay all traffic (because we don't care
about duplicates)
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Lessons learned

e |[f you're going to crash, do everything you can to limit
Its scope

e Use every possible feature of your environment to
your advantage

e Have clear points of responsibility handoff

¢ Find a way to replicate prod, even if it means testing in
prod
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System Metrics

Impbus Uptime
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