
99.99% Uptime at 175
TB of Data Per Day

Ben John
CTO

bjohn@appnexus.com

Matt Moresco
Software Engineer, Real Time Platform

mmoresco@appnexus.com















Impbus

Web page Cookiemonster

Bidder

External

bidders

Batches

Packrat Data

pipeline

 

~120ms



Impbus

Web page Cookiemonster

Bidder

External

bidders

Batches

Packrat Data

pipeline

 



Managing failure
Prevent it in the first place

Unit/Integration tests
Canary releases

When it happens, recover quickly



Ways we fail
Data distribution unreliability
C woes
DDOSing ourselves



Handling bad data
Good news: our systems deliver object updates to
thousands of servers around the world in under two
minutes!
Bad news: our systems can deliver crashy data to
thousands of servers around the world in under two
minutes!



Handling bad data
Validation engines: run a
copy of the production app,
see if it crashes before
distributing data globally
This can still fail in bad ways:

VE version not aligned
with production
Time-based crashes

Batches

Impbae

 ✅Impbus

https://emojipedia.org/white-heavy-check-mark/


Handling bad data
Feature switches: AN_HOOK
Roll back time! Prevent distribution past a timestamp



C woes
No exceptions in C!

Catch signal, throw out request, return to event
loop
Flipped off on some instances so we can get a
backtrace

core_me_maybe



Packrat
Home grown data router
Transform, buffer, compress, forward
Transformations: message format, sharding, sampling,
filtering

Message formats: protobuf, native x86 format, json
(Rolling your own serialization format is probably a
bad idea)

High volume disk throughput
Guaranteed message delivery



Packrat Topology

Singapore

LA NY

Amsterdam

Frankfurt



Packrat protocol
Group by like type
HTTP post
Batch

Prefer to send full buffers
Fall back to 10s limit

Snappy compress everything



Packrat failure handling
Request fails: write it to disk

separate process running on the instance that will
continually read failed rows from disk, retry
sending them
if the retry fails, write to disk, do it all again

Prone to nasty failure scenarios

repackd



Bad data
If a schema evolution diverges in prod, we will crash
Because of our failure handling mechanisms, a single
bad message can machine gun an entire datacenter 



Packrat failure handling
Because we buffer data in outing requests, we
send back a 200 OK before the a message is
sent downstream or written to disk
What about data in memory when packrat
crashes?

🤔

https://emojipedia.org/thinking-face/


Packrat failure handling
Write-ahead log: write every (compressed) incoming
request to disk for a 5 minute window
On startup, replay all traffic (because we don't care
about duplicates)



Lessons learned
If you're going to crash, do everything you can to limit
its scope
Use every possible feature of your environment to
your advantage
Have clear points of responsibility handoff
Find a way to replicate prod, even if it means testing in
prod




