99.99% Uptime at 175
TB of Data Per Day

Ben John
CTO
bjohn@appnexus.com

Matt Moresco
Software Engineer, Real Time Platform
mmoresco@appnexus.com

:\: AppNexus

APPNEXUS

is an internet technology company

that harnesses data and machine learning
to power the world’s largest digital
audience platforms.

MARKETERS

What Does A

Consumers pay for content - .
with their attention Monetizing content:
-------- ~ the lifeblood of the Internet

to ads that matter - ~o

Look Like?

: INNOVATION®
l‘\ *Powered by
:\\: AppNexus

CONSUMERS PUBLISHERS

-o -

Quality content = an educational,
entertaining, inspiring Internet

1\
h\- AppNexus

Internet Scale Architecture

Internet Scale

:\\: AppNexus mg! NASDAQ VISA
10B

impressions
transacted daily

120B

daily auctions

average daily trades in the

month of August' trades on September 21¢!, 20162 average transactions per day?

' Source: NYSE Market Data
2 Source: NASDAQ market data
? Source: Visa

tial

* Process 400 trillion audience
segments per day

Data processing
highlights

» 5 million records processed concurrently
under <10 milliseconds

* Tens of millions of records are
processed/Aggregated/priced/algorithms
applied in near real-time

* Leverages the best possible data to

make the best decision in real-time

* Global scaled to be economical,
resilient and expandable ‘“

Our Culture

. 0
O|6|O
[I|'—'|I 1 PROCESS

| Autonomy & Alignment

PEOPLE

Engaged & Effective
PLATFORM AN

Innovative & Reliable

~120ms

» 4 > -
<
| | -
> < >
External
bidders

\\ AppNexus

External
bidders
.

\\ AppNexus

Managing failure

e Preventitin the first place

= Unit/Integration tests
= Canary releases

e When it happens, recover quickly

:\\: AppNexus

Ways we falil

e Data distribution unreliability
e C woes
e DDOSing ourselves

:\\: AppNexus

Handling bad data

e Good news: our systems deliver object updates to
thousands of servers around the world in under two
minutes!

e Bad news: our systems can deliver crashy data to
thousands of servers around the world in under two
minutes!

:\\: AppNexus

Handling bad data

Validation engines: run a
copy of the production app,
see if it crashes before
distributing data globally
This can still fail in bad ways:

= VE version not aligned
with production

= Time-based crashes -II

\‘ AppNexus

https://emojipedia.org/white-heavy-check-mark/

Handling bad data

e Feature switches: AN_HOOK
e Roll back time! Prevent distribution past a timestamp

:\\: AppNexus

C woes

e No exceptions in C!
® core_me maybe
= Catch signal, throw out request, return to event
loop

= Flipped off on some instances so we can get a
backtrace

:\\: AppNexus

Packrat

e Home grown data router
e Transform, buffer, compress, forward
¢ Transformations: message format, sharding, sampling,

filtering
= Message formats: protobuf, native x86 format, json
= (Rolling your own serialization format is probably a
bad idea)

e High volume disk throughput
e Guaranteed message delivery

:\\: AppNexus

Singapore

Packrat Topology

)

LA

-
—

NY

-
—

/

Amsterdam

\ Frankfurt

:\: AppNexus

Packrat protocol

e Group by like type
e HTTP post
e Batch

m Prefer to send full buffers
m Fall back to 10s limit

e Snappy compress everything

:\\: AppNexus

Packrat failure handling

e Request fails: write it to disk
® repackd

m separate process running on the instance that will
continually read failed rows from disk, retry
sending them

= if the retry fails, write to disk, do it all again
e Prone to nasty failure scenarios

:\\: AppNexus

Bad data

e |f a schema evolution diverges in prod, we will crash
e Because of our failure handling mechanisms, a single
bad message can machine gun an entire datacenter

:\\: AppNexus

Packrat failure handling

e Because we buffer data in outing requests, we
send back a 200 OK before the a message is
sent downstream or written to disk

e \What about data in memory when packrat

crashes?

:\\: AppNexus

https://emojipedia.org/thinking-face/

Packrat failure handling

e Write-ahead log: write every (compressed) incoming
request to disk for a 5 minute window

e On startup, replay all traffic (because we don't care
about duplicates)

:\\: AppNexus

Lessons learned

e |[f you're going to crash, do everything you can to limit
Its scope

e Use every possible feature of your environment to
your advantage

e Have clear points of responsibility handoff

¢ Find a way to replicate prod, even if it means testing in
prod

:\\: AppNexus

System Metrics

Impbus Uptime

:\\: AppNexus

