
Front-End APIs
Powering Fast-Paced Product Iterations

Speakers

​Jeff Weiner
​Chief Executive Officer

​Aditya Modi
​Staff Software Engineer

​Karthik Ramgopal
​Sr Staff Software Engineer

Overview

History and evolution of frontend APIs at LinkedIn

Our API structure today

Learnings and results

Sneak peek at the future

2 Years Ago

Mobile v/s Desktop

Feed on mobile Feed on desktopFeed on iPad

Client - Server setup

mobile-frontend-API tablet-frontend-API homepage-frontend-API profile-frontend-API

Android iOS Tablet homepage-desktop-web profile-desktop-web

• Huge API surface and diversity

• No IDL/schema backing API

• Slow iteration speed

Problems?

Today

Mobile v/s Desktop

Feed on mobile Feed on desktopFeed on iPad

Client - Server setup

flagship-frontend-API

flagship-android flagship-iOS flagship-desktop-webflagship-mobile-web

Rest + JSON over HTTP2

Mid-tier Mid-tier

• > 120k QPS

• ~425 developers

• ~30 commits per day

Scale

• Automated continuous release

• commit to production in < 3 hours

• 3 deployments a day

3x3 Deployment

Modeling

• Backed by Strongly Typed Schemas

• Backward-compatible evolution

• No endpoint versioning

Principles

{
 "type": "record",
 "name": "TestRecord",
 "namespace": "com.linkedin.test",
 "doc": "Test",
 "fields": [
 {
 "name": "id",
 "type": "String",
 "doc": "ID"
 },
 {
 "name": "name",
 "type": "String",
 "doc": "Name",
 “optional”: true
 },
]
}

@interface TestRecord : NSObject

@property(nonnull, copy) NSString *id;
@property(nullable, copy) NSString *name;

@end

class TestRecord {

 @NonNull public final String id;
 @Nullable public final String name;

}

export default DS.Model.extend({

 id: DS.attr(‘string’),

 name: DS.attr(‘string’)

});

Schema definition

iOS

Android

Web

Entity Modeling

• Return - Collection<Card>

Composite screens

● Two top level resources

■ Invitations

■ PYMK (People You May Know)

● 1 network call to fetch both resources

■ Infrastructure level aggregation support

• Easy to model

• Decouple API from UI

• Client side consistency

Advantages

Client side consistency

Client side consistency

• Why ?

○ Good UX

○ Optimistic writes

Client side consistency

Can you do this auto-magically?

Client side consistency

Payload Cache

Client side consistency

Payload Cache

Client side consistency

Cache Payload

Everything is awesome, right?

Takes a long time to ship a feature

API Server

1.5 weeks

iOS

2 weeks

Android

2 weeks

Web

2 weeks

Total time

3.5 weeks=+

Use case: Introduce a new kind of notification

• Create new models for every feature

• Write code on each client platform

• Wait for native app release/adoption

Why so long?

Challenge

Cut this down to 1 day!

• Quickly build and release notifications

• Increase user engagement

• Sweet and sticky, just like honey!

Project Honeycomb

• New notifications WITHOUT app updates

• Client side consistency

• Stellar runtime performance

Beyond iteration speed...

• Model based on how the UI view looks

• Similar views grouped into 1 template

• More UI specific logic on API server

View Template API

Share notification

Share Template

● PrimaryImage: URL?
● Title: AttributedString
● Timestamp: Long
● ShareImage: URL?
● ShareTitle: String
● LikeCount: Long? (Default: 0)
● CommentCount: Long? (Default: 0)

Now let’s look at a slightly different notification

Modify Share Template

● PrimaryImage: URL?
● Title: AttributedString
● Timestamp: Long
● ShareImage: URL?
● ShareTitle: String AttributedString
● ShareSubtitle: AttributedString?
● LikeCount: Long? (Default: 0)
● CommentCount: Long? (Default: 0)

How about something radically different?

Work Anniversary Template

● PrimaryImage: URL?
● Title: AttributedString
● Timestamp: Long

Something slightly different again?

Work Anniversary/New Position Template

● PrimaryImage: URL?
● Title: AttributedString
● Timestamp: Long
● BodyText: AttributedString?

How do we return a heterogeneous list?

• Use Rest.li paginated collections. Differentiate between items using a Union.

• JSON payload structure:

{

“elements” : [

{“Share”: {“Title”: “Sarah Clatterbuck shared a…”, ...}},

{“Anniversary”: {“Title”: “Congratulate Nitish Jha…”, ...}},

....

],

“paging”: { “start” : 0, “count”: 10, “paginationToken”: “xydsad”}

}

Minor payload optimization

• Embed the type into the payload to reduce nesting.

• JSON payload structure:

{

“elements” : [

{“Type”: “Share”, “Title”: “Sarah Clatterbuck shared a…”, ...},

{“Type”: “Anniversary”, “Title”: “Congratulate Nitish Jha…”, ...},

....

],

“paging”: { “start” : 0, “count”: 10, “paginationToken”: “xydsad”}

}

• Code-generated response parser

• Bind model to native views

• Write once* per layout, reuse.

Client side rendering

Backward compatibility

{

“elements” : [

{“Stat”: {“Title”: “Your Profile...”, ...}},

{“JYMBII”: {“Title”: “5 Jobs you”, ...}},

{“Share”: {“Title”: “Swati Mathur...”, ...}},

....

],

“paging”: { “start” : 0, “count”: 10,
“paginationToken”: “xydsad”}

}

Drop unknown notification types.

Backward compatibility

Drop unknown fields based on product needs.

• New notification types without client
changes

• Renders faster on the client
Benefits

But… Client side Consistency is lost!

How do we solve this?

How did we solve the AttributedString problem?

• Model formatted text

• Control formatting from the server

• Impractical to use HTML

AttributedString

AttributedString schema

AttributedString

● Text: String
● Attributes: List[Attribute] BOLD, ITALIC, UNDERLINE etc.

Attribute

● Type: AttributeType
● StartIndex: Int
● Length: Int
● Metadata: Any?

Platform specific binding

Infrastructure provided support

iOS

Android

Web

NSAttributedString

Spannable

HTML

AttributedString

What if we extended this concept to entity mentions?

Model entity mentions also as a custom formatting specifier.

Profile mention Profile mention

Introducing TextViewModel

TextViewModel

● Text: String
● Attributes: List[TextViewAttribute]

TextViewAttribute

● Type: TextViewAttributeType
● StartIndex: Int
● Length: Int
● Metadata: Any?

● Profile: Profile?
● Job: Job?
● Company: Company?
● Course: Course?

Flattened canonical entities as optional fields

Similar to AttributedString

Entity mentions

Entities could be mentioned in different ways.

First Name
Full Name

Position

TextViewAttributeType

TextViewAttributeType

● PROFILE_FIRST_NAME
● PROFILE_FULL_NAME
● PROFILE_HEADLINE
● PROFILE_DISTANCE
● COMPANY_NAME
● COMPANY_HEADLINE
● JOB_TITLE
● ….

If a particular type is used, then the corresponding entity is populated by the server.

● PROFILE_XXX types will populate the profile field for example with the corresponding profile.

Backward compatibility++

Old clients cannot handle new mention types. Always send Raw text though redundant.

{

“title” : {

“Text”: “Sarah Clatterbuck shared this”,

“Attributes”: [

{“Type”: “PROFILE_FULL_NAME”,

“StartIndex”: 0….}

]

}

}

• Singular and Plurals

• Possessive forms

• i10n and i18n

Watch Out

How about images?

Use the same concept as TextViewModel. Introduce ImageViewModel.

ImageViewModel

● Attributes: List[ImageViewAttribute]

ImageViewAttribute

● ImageViewAttributeType
● URL: URL?
● ResourceName: String?
● Profile: Profile?
● Job: Job?
● Company: Company?
● Course: Course?

Flattened canonical entities as optional fields

ImageViewAttributeType

ImageViewAttributeType

● URL
● RESOURCE_NAME
● PROFILE_IMAGE
● PROFILE_BACKGROUND
● COMPANY_IMAGE
● ….

If a particular type is used, then the corresponding entity is populated by the server.

● PROFILE_XXX types will populate the profile field for example with the corresponding profile.
● URL type will populate the image URL
● RESOURCE_NAME will populate the pre-canned resource name.

Rendering Images

● Infra code extracts Image URL out of ImageViewModel

● Load into platform specific image view.

One Attribute: Regular ImageView

Multiple Attributes: GridImageView

Performance considerations

Entities may repeat multiple times within the same notification causing payload size bloat.

Tim’s Profile in ImageViewModel Tim’s Profile in TextViewModel

Solution: Response Normalization

All canonical entities have a unique ID. Use a JSON API like response format.

{

“data” : {

“Profile”: “profile:123”, ...

},

“included”: [

{

“id” : “profile:123”, “firstName” : “Tim”, “LastName” : “Jurka”, ... }

},

....

]

}

Performance considerations (Continued)

All fields from the entities may not be used.

ImageURL First Name and Last Name

Solution: Deco

Deco is a LinkedIn framework that allows selective projection and decoration of fields.

Profile in TextViewModel

ID
FirstName
LastName

Profile in ImageViewModel

ID
ImageURL

Profile in Response

ID
FirstName
LastName
ImageURL

Results

Improved Developer and Product Velocity

9 new notification types in all of 2016
16 new notification types in May and June 2017

API model reduction

42 API models for old UI
6 API models for new UI

Code size reduction

15k LOC app and test code for old UI
3k LOC app and test code for new UI

Future Direction

● Extend to other pages in Flagship

● Extend to other LinkedIn apps like JobSeeker, Recruiter etc.

Out of scope for this talk

● Intricate details of client side consistency management

● Generic Modeling of actions

● Challenges in migrating from the old notifications API to the new one

Find us after the talk, and we’re happy to chat about this and more.

Q & A

​amodi@linkedin.com
​https://www.linkedin.com/in/modiaditya/

​

​Aditya Modi
​kramgopal@linkedin.com

​https://www.linkedin.com/in/karthikrg/
​
​

​Karthik Ramgopal

mailto:amodi@linkedin.com
mailto:amodi@linkedin.com
https://www.linkedin.com/in/modiaditya/
https://www.linkedin.com/in/modiaditya/
mailto:kramgopal@linkedin.com
mailto:kramgopal@linkedin.com
https://www.linkedin.com/in/karthikrg/
https://www.linkedin.com/in/karthikrg/

