
Opportunities & Pitfalls
of
Event-Driven Utopia

@berndruecker

Why this talk

Why this talk

Service 1

Agenda

Service 2

Events on the inside

Events on the outside

1

3

Service 1

Agenda

Service 2

Events on the inside

Events on the outside

1

3

Events inside out2

Service 1

Agenda

Service 2

Events on the inside1

Events on the outside3

Events inside out2

Once upon a time…

RDMS

Application

Client

BBC architecture
(box - arrow – box – arrow - cylinder)

Every architecture diagram
you'll ever need

The great thing about this architecture

RDMS

Application

DB gurantees
(e.g. ACID)

The problem

not webscale
resiliency is expensive

RDMS

Application

RDMS

Pat Helland

https://vimeo.com/52831373

https://vimeo.com/52831373

Append-only
Log

…

bank
account
created

+2,500 $
transfered

-14.99$
paid by

credit card

…

Persistent change

RDMS

Account # Balance

12345 2,500$

Persistent state

Current Balance =
2,485.01 $

Append-only
Log

…

bank
account
created

+2,500 $
transfered

-14.99$
paid by

credit card

…

Persistent change Event

Bank Account Created
2019/04/16 11:00

12345

Event

Money Transfer Received
2,500$

2019/04/16 11:00
12345

Event Sourcing in a nutshell

Customer

Business
Logic

Save
event

2. Read events

Replay

…

Internal State

3. Build
internal state

5. Add Customer Created Event

1. Create Customer 4. Validation and
Invariant Checks

e.g. Customer Created, Customer Credit Limit Approved, …Customer Event Store

6. Async publish
Customer Created Domain Event

Working without distributed transactions

Customer

Business
Logic

Save
event

2. Read events

Replay

…

Internal State

3. Build
internal state

5. Add Customer Created Event

1. Create Customer 4. Validation and
Invariant Checks

e.g. Customer Created, Customer Credit Limit Approved, …Customer Event Store

6. Async publish
Customer Created Domain Event

This is the only
atomic operation

required

Traditional Architecture

Customer

1. Create Customer

Account

RDMS

Business
Logic

Open
Account

2. Persist state
changes

3. Remote
Communication

Pat Helland

“

Distributed Systems Guru
Worked at Amazon,
Microsoft & Salesforce

@berndruecker

Pat Helland

Grown-Ups Don’t Use
Distributed Transactions

“

Distributed Systems Guru
Worked at Amazon,
Microsoft & Salesforce

Open
Account

Outbox pattern in traditional architectures

Customer

1. Create Customer

Account

RDMS

Business
Logic

Job:
„Open

Account“

2. Persist state
changes

3. Remote
CommunicationExecute:

„Open
Account“

TX 1 TX 2

Async after first
transaction!

Outbox pattern – Implementation Approaches

Scheduler

Database
Transaction Log

Workflow
Automation

Idempotency

Customer

1. Create
Customer

Account

RDMS

Business
Logic

Job:
„Open

Account“

2. Persist state
changes

3. Remote
Communication

Async after
transaction!

Execute:
„Open

Account“

Capture
Request

TX 1 TX 2

Idempotency

Customer

1. Create
Customer

Account

RDMS

Business
Logic

Job:
„Open

Account“

2. Persist state
changes

3. Remote
Communication

Async after
transaction!

Execute:
„Open

Account“

Capture
Request

TX 1 TX 3TX 2

Working without distributed transactions

Customer

Business
Logic

Save
event

2. Read events

Replay

…

Internal State

3. Build
internal state

5. Add Customer Created Event

1. Create Customer 4. Validation and
Invariant Checks

e.g. Customer Created, Customer Credit Limit Approved, …Customer Event Store

6. Async publish
Customer Created Domain Event

This is the only
atomic operation

required

Events on the inside.
An example from my world

mail@berndruecker.io
@berndruecker

Bernd Ruecker
Co-founder and
Chief Technologist of
Camunda

mailto:mail@berndruecker.io

We offer two different workflow engines. Why?

Camunda ZeebePersistent
State

Persistent
change

Workflow
Instance
Id

Current
Activity

State

2 RetrievePayment running

Workflow
Instance
Id

Current
Activity

State

2 ShipGoods running

Workflow
Instance
Id

Current
Activity

State

2 OrderDelivered ended

2.

3. UPDATE

2. UPDATE

1. INSERT

3.1.

RDMS

Workflow
Engine

Append-only
Log1.

create
workflow
instance

workflow
instance
created

start
event

occured

sequence
flow taken

activity
activated

task
created

lock
created

task
locked

complete
task

task
completed

activity
completed

sequence
flow taken

…

…

2.

2.
1.

Workflow
Engine

Event Handling, Replication & Single Writer

Follower
Follower

complete task
command

task completed
event

1 send

2 append command

Broker
(Leader)

Stream
Processor

4 process

7
store & replicate
event6 append event

3
store & replicate
command

5 respond

Single Writer
(single thread)

What we do different

Follower
Follower

complete task
command

task completed
event

1 send

2 append command

Leader

Stream
Processor

4 process

7
store & replicate
event6 append event

3
store & replicate
command

5 respond

Single Writer
(single thread)

Store and replay
commands

Delete records that
are fully processed

Persist & replicate
internal state

Consistency
Availability
Partition

Zeebe is CP

Follower
Follower

complete task
command

task completed
event

1 send

2 append command

Leader

Stream
Processor

4 process

7
store & replicate
event6 append event

3
store & replicate
command

5 respond

Single Writer
(single thread)

Horizontal scalability by partitioning

Partition 1

Partition 2

Partition 3

Partition 4

Every workflow instance is
exactly handled by one
partition

instance id: 2-42

instance id: 3-66

Stream
Processor Single Writer

(single thread)

Queries and
read models

Zeebe
Broker

Zeebe
Broker

Streaming
Exporter

ask

ask

Recap 1 – Events on the inside

Natural mechanism to build scalable services in distributed
systems (with Outbox & co included)

But
You have to think about reads, queries & eventual consistency
Much less industry experience available

@berndruecker

Service 1

Agenda

Service 2

Events on the inside

Events on the outside

1

3

Events inside out2

Event Store and Messaging

Customer

…

1. Create Customer

Customer Event Store

Merge Messaging and Event Store

Customer

…

1. Create Customer

Customer Event Store

Merge messaging and event store

Customer

…

1. Create Customer

Shared Event Store

Enter the world of Kafka…

Merge messaging and event store

Customer

…

1. Create Customer

Shared Event Store

Kafka as transport

Customer

…

1. Create Customer

Used as queue (but persistent!)

Service 1

Agenda

Service 2

Events on the inside

Events on the outside

1

3

Events inside out2

Once upon a time

Billing

Customer

Change
Address

Event Notification

Address
changed

Billing

Customer

Event Notification

Address
changed

Billing

Customer

Billing

Customer

Reverse direction
of dependency

What‘s
general

Which
Who direction

of dependency

Change
Address

Event Notification

Address
changed

Billing

Customer AdressChanged
{

customerId: 42
}

Ask for
details

Event-carried State Transfer

Address
changed

Billing

Customer

AddressChanged
{
customerId: 42,
address: ...

}

CustomerChanged
{
customerId: 42,
status: A,
address:
...,

}

AddressChanged
{
customerId: 42,
oldAddress: ...
newAddress: ...

}

CustomerMoved
{
...,
}

This decision is complex

Address
changed

Billing

Customer

Billing

Customer

Reverse direction
of dependency

What‘s
general

Which
Who direction

of dependency

Change
Address

Example

Change Address

Address

Submit
From bla@company.com

Date 2019-04-23 09.05

To confirm your address change please click on this link:

http://company.com/confirm?id=82e97d49-166c-4862-
9973-4db348e6225d

Incoming Email

Example

Customer

Notification

Address change
confirmed

Change Adress
Address change

requested

http://company.com/confirm?id=82e97
d49-166c-4862-9973-4db348e6225d

direction of dependency

http://company.com/confirm?id=82e97d49-166c-4862-9973-4db348e6225d

Example

Customer

Notification

‚Confirmation‘
approved

Change Adress
http://company.com/confirm?id=82e97
d49-166c-4862-9973-4db348e6225d

Send mail
‚Confirmation‘

Address
changed

direction of dependency

http://company.com/confirm?id=82e97d49-166c-4862-9973-4db348e6225d

Challenge:
Command vs. Event

Event

Command

vs

It is NOT about communication protocols

Address
changed

Billing

Customer

Billing

Customer

Change
Address

It can be messaging,
REST, whatever, ….

Manifold ways of transport

…

Manifold ways of transport

…

?

Event Command Query

Message Record Event

Fact,
happened in the past,
immutable

Intend,
Want s.th. to happen,
The intention itself is a fact

?

Event Command Query

Message Record Event

Commands in disguise

The Customer Needs To Be
Sent A Message To Confirm

Address Change
Event

Send
Message

Wording of
Sender

Wording of
recipient

Examples

PaymentOrder

Subscription

Retrieve
Payment

More general,
does not need to know

who is retrieving payments
Customer

Order

Address
Changed

Billing

More general,
does not need to care about

who is interessted in address changes

Notification

Send
Mail

Global service

Order
Notification

Order
Placed

Payment
Received

Goods
Shipped

Service that can
handle notifications

for orders
autonomously

Distributed Monoliths
Authorization

Service

Document Context Page
Context

Document
attached

Page
created

Document
moved

Page
moved

…

Define stable contract/API instead
Authorization

Service

Document Context Page
Context

Add
auth

…

Next challenge:
Event chains

Event Chains

Adress
Check

Credit Check

Registration

@berndruecker

Customer

Event Bus
Registration

requested
Credit

checked
Address
checked

Customer
registered

Event Chains

Adress
Check

Credit Check

Registration

@berndruecker

Customer

Event Bus
Registration

requested
Credit

checked
Address
checked

Customer
registered

How does customer
registration work?

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

The danger is that it's very easy to make
nicely decoupled systems with event
notification, without realizing that you're
losing sight of that larger-scale flow, and
thus set yourself up for trouble in future
years.

https://martinfowler.com/articles/201701-event-driven.html

@berndruecker

https://martinfowler.com/articles/201701-event-driven.html

Monitoring Workflows Across Microservices

https://www.infoq.com/articles/monitor-workflow-collaborating-microservices

@berndruecker

https://www.infoq.com/articles/monitor-workflow-collaborating-microservices

Typical approachesDistributed Tracing

Data Lake / Event Monitoring

Process Mining

Process Tracking

@berndruecker

What we currently build with customers…

Camunda
Optimize

Elastic
Registration

requested
Credit

checked
Address
checked

Customer
registered

@berndruecker

All great – until you have to move…

Changes required for an additional check

Adress
Check

Credit Check

Registration

Criminal
Check

@berndruecker

Customer

Event Bus
Registration

requested
Credit

checked
Customer
registered

Address
checked

Changes required for an additional check

Adress
Check

Credit Check

Registration

Criminal
Check

@berndruecker

Customer

Event Bus
Registration

requested
Credit

checked
Customer
registered

Address
checked

Criminal
checked

Alternative flow

Adress
Check

Credit Check

Registration

Criminal
Check

@berndruecker

Customer

Kafka Customer
registered

Registration
requested

Address
checked

Credit
checked

Criminal
checked

Alternative flow

Adress
Check

Credit Check

Registration

Criminal
Check

@berndruecker

Customer

Kafka Customer
registered

Registration
requested

Address
checked

Credit
checked

Criminal
checked

„Credit checks got more
expensive, do that only if all

other checks succeed“

Keep it stable, just move
sticks with yellow color to the

top.

How hard
can it be?

What we wanted

Photo by Lijian Zhang, available under Creative Commons SA 2.0 License and Pedobear19 / CC BY-SA 4.0

@berndruecker

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Orchestration

Adress
CheckCredit Check

Registration

Customer

Kafka
Registration

requested
Credit

checked
Address
checked

Customer
registeredCheck

credit

Check
address

Customer
checked

Customer
On-boarding

Of course these two
services could be merged

Changes

Adress
CheckCredit Check

Registration

Customer

Kafka
Registration

requested
Credit

checked
Address
checked

Customer
registeredCheck

credit

Check
address

Customer
checked

Customer
On-boarding

Criminal
Check

Crimes
checked

Check
crimes

Comparison
2 changes
criminal check can be deployed first

2 changes,
criminal check can be deployed first

See also https://www.infoworld.com/article/3391592/
how-to-tame-event-driven-microservices.html

https://www.infoworld.com/article/3391592/how-to-tame-event-driven-microservices.html
https://www.infoworld.com/article/3391592/how-to-tame-event-driven-microservices.html

In my world…

Customer
On-boarding

Leverage Workflow Engine & BPMN within Service

Customer On-boarding

Local Orchestration

Central
Orchestration

Service

Recap 2
Commands vs. Events: Decide about the direction of
dependencies
Beware of event-chains and avoid losing sight
Balance choreography and orchestration

@berndruecker

Service 2Service 1

Recap

Events on the inside

Events on the outside

1

3

Persistent state vs persistent change
Event sourcing & Event Store
Consistency & CAP
Read Models & CQRS

Events as API
Event vs Command
Event chains & visibility
Orchestration vs Choreography

Shared Event Store

Events inside out2

Want to see code?

Nothing for the faint of heart…
Events on the inside

Events on the outside

Nothing for the faint of heart…

…but doable…

…and worth it

Thank you!

@berndruecker

mail@berndruecker.io
@berndruecker

https://berndruecker.io

https://medium.com/berndruecker

https://github.com/berndruecker

https://www.infoq.com/articles/events-
workflow-automation

Contact:

Slides:

Blog:

Code:

https://www.infoworld.com/article/3254777/
application-development/
3-common-pitfalls-of-microservices-
integrationand-how-to-avoid-them.html

https://thenewstack.io/5-workflow-automation-
use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

