
Milking the most 
out of thousands of 
Kubernetes clusters



What to expect from the session

• Intro
• How is CFA using K8s?
• What does our 

architecture look like?
• How are we 

engineering around 
K8s for our business?

• Q&A



Internet of Things: Why?



AT PEAK HOUR
1 sandwich every 16 seconds

1 box of nuggets every 25 seconds
1 order of waffle fries every 14 seconds

1 car through the drive thru every 22 seconds
267 total transactions
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Chick-fil-A Architecture (Today)
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Why Containers? Why Kubernetes?

Idea Code Production 
Code

Value

Impact

Optimize for



Accelerate
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North American Data Centers
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Restaurant “Data Centers”

Intel: Quadcore processor, 8 GB RAM, SSD



Engineering Around K8s

• How we build and repair bare 
metal clusters 

• SRE Lessons Learned
• How we deploy applications to 

thousands of clusters



Challenges of Bare Metal K8s clustering at scale

• Goal: #code2prod
• Simple enough for a non-

technologist to install
• Manageable remotely
• Automated device discovery 

and self-clustering
• Self healing & HA



How we Bare Metal Cluster K8s at scale
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Bootstrapping Clusters

• Highlander
– Node coordination and 

clustering leader election 
using UDP

– Execute clustering (RKE)
– Swap KubeDNS for CoreDNS
– Base OAuth identity 

negotiation
– Controller Pods (control 

plane activity/Istio)



Initializing Clusters

What we considered
• Kops = love it, no bare metal
• Kubespray = slow + brittle
• kubeadmin = maybe in the future
• RKE = fairly simple, works for us

Future State? 
• Stick w/ RKE, Kubeadmin, or roll our own to meet our needs



Resetting Cluster State

• Requirement: Need to be 
able to re-image remotely

• Solution: Overlay FS + HAMS
– Manages wiping clusters 

and restoring to base



Hooves Up

• Self-healing AWS SSM 
Registration

• Free even for non-AWS 
deployments  

• Able to do remote 
commands and patch 
reporting/management



Lessons learned

• Use K8s feature set and don’t reinvent the wheel
• MVP. MVP. MVP.
• Ensure aggregated and searchable logging
• Deep health checks are a must --> Use /healthz

• Every service needs “/metrics”
endpoint



How do we deploy to our restaurants?

• Large number of 
deployment targets

• Complex success/fail 
criteria

• Array of application types

• What approaches did we 
consider?

kubectl

/



Introducing Fleet

• Design Goals
– Simple to use / reason about
– Use declarative approach
– Support for variety of deployment 

models (canary, blue/green)
– Rollout over flexible time period
– Sane rollback behaviors
– Leverage standard k8s API
– Full visibility



Fleet Ecosystem Components

• Fleet Client
– Git webhook, REST call, CLI

• Fleet Server API
– Code generation for 

deployment, service, 
ingress files

– Git management for cluster 
repositories

– Deployment status tracking

• Atlas
– Repository of deploy-ready, 

k8s compliant application 
files

• Vessel
– Deployed on cluster, git 

pull, kubectl apply, report 
status

• Dashboards



Sample Templates



Fleet Walk Thru/Demo PLACEHOLDER



Application Configuration

HTTP POST Request



K8s config example



Atlas



Fleet Walk Thru/Demo PLACEHOLDER



Where you can find us

www.linkedin.com/in/brian-chambers
www.linkedin.com/in/calebrhurd

@brianchambers21
@calebrhurd

https://medium.com/@cfatechblog

https://github.com/chick-fil-a


