
Milking the most
out of thousands of
Kubernetes clusters

What to expect from the session

• Intro
• How is CFA using K8s?
• What does our

architecture look like?
• How are we

engineering around
K8s for our business?

• Q&A

Internet of Things: Why?

AT PEAK HOUR
1 sandwich every 16 seconds

1 box of nuggets every 25 seconds
1 order of waffle fries every 14 seconds

1 car through the drive thru every 22 seconds
267 total transactions

Chick-fil-A Architecture (2017)

MSGing Web
Server

Local
AuthEdge

Cloud

Event
Fwding

Apps
…

Local Persistence/Storage

Connectivity

Analytics Management

Things

OAuth Server MQTT

Edge Tools

Chick-fil-A Architecture (Today)

MSGing
Local
AuthEdge

Cloud

Event
Fwd

Apps
…

Local Persistence/Storage

Connectivity

Analytics Management

Things

OAuth Server MQTT Fleet

Why Containers? Why Kubernetes?

Idea Code Production
Code

Value

Impact

Optimize for

Accelerate

North American Data Centers

Google
Cloud

AWSAzure

North American Data Centers

Google
Cloud

AWSAzure

Cloud-fil-A

Restaurant “Data Centers”

Intel: Quadcore processor, 8 GB RAM, SSD

Engineering Around K8s

• How we build and repair bare
metal clusters

• SRE Lessons Learned
• How we deploy applications to

thousands of clusters

Challenges of Bare Metal K8s clustering at scale

• Goal: #code2prod
• Simple enough for a non-

technologist to install
• Manageable remotely
• Automated device discovery

and self-clustering
• Self healing & HA

How we Bare Metal Cluster K8s at scale

Highlander Hooves Up

TO
OL

S Sherlock FleetRKEImage

PR
OC

ES
S

Bootstrapping Clusters

• Highlander
– Node coordination and

clustering leader election
using UDP

– Execute clustering (RKE)
– Swap KubeDNS for CoreDNS
– Base OAuth identity

negotiation
– Controller Pods (control

plane activity/Istio)

Initializing Clusters

What we considered
• Kops = love it, no bare metal
• Kubespray = slow + brittle
• kubeadmin = maybe in the future
• RKE = fairly simple, works for us

Future State?
• Stick w/ RKE, Kubeadmin, or roll our own to meet our needs

Resetting Cluster State

• Requirement: Need to be
able to re-image remotely

• Solution: Overlay FS + HAMS
– Manages wiping clusters

and restoring to base

Hooves Up

• Self-healing AWS SSM
Registration

• Free even for non-AWS
deployments

• Able to do remote
commands and patch
reporting/management

Lessons learned

• Use K8s feature set and don’t reinvent the wheel
• MVP. MVP. MVP.
• Ensure aggregated and searchable logging
• Deep health checks are a must --> Use /healthz

• Every service needs “/metrics”
endpoint

How do we deploy to our restaurants?

• Large number of
deployment targets

• Complex success/fail
criteria

• Array of application types

• What approaches did we
consider?

kubectl

/

Introducing Fleet

• Design Goals
– Simple to use / reason about
– Use declarative approach
– Support for variety of deployment

models (canary, blue/green)
– Rollout over flexible time period
– Sane rollback behaviors
– Leverage standard k8s API
– Full visibility

Fleet Ecosystem Components

• Fleet Client
– Git webhook, REST call, CLI

• Fleet Server API
– Code generation for

deployment, service,
ingress files

– Git management for cluster
repositories

– Deployment status tracking

• Atlas
– Repository of deploy-ready,

k8s compliant application
files

• Vessel
– Deployed on cluster, git

pull, kubectl apply, report
status

• Dashboards

Sample Templates

Fleet Walk Thru/Demo PLACEHOLDER

Application Configuration

HTTP POST Request

K8s config example

Atlas

Fleet Walk Thru/Demo PLACEHOLDER

Where you can find us

www.linkedin.com/in/brian-chambers
www.linkedin.com/in/calebrhurd

@brianchambers21
@calebrhurd

https://medium.com/@cfatechblog

https://github.com/chick-fil-a

