OREILLY®

Choose Your Own
Adventure:

Building Confidence in System Behavior
through Experiments

Nora Jones, Senior Chaos Engineer
@nora_js



@nora_js

In this talk

Choosing your own adventure with Chaos

Phases of Chaos

Road to cultural acceptance

Alternating between anecdotes and advice (when | do,
you’ll see a “Story” icon)



In this talk

Choosing your own adventure with Chaos

Phases of Chaos

Road to cultural acceptance

Alternating between anecdotes and advice (when | do,
you’ll see a “Story” icon)



Known ways of testing for
availability

Unit Tests
Regression Tests
Integration Tests
Chaos Engineering



“l want to emphasize that both
sides of the equation
[unit/regression/integration
testing side and Chaos side] are
required to get you the level of
availability you want.”

--Haley Tucker, Netflix



Chaos Engineering



You can't keep blaming your cloud @nora_js

(]
provider |
;t:j:rry‘an m v
When your dialogs have references to your

cloud provider, you're probably not doing
"cloud" right. #vendorlockin

Server Communication Error

We are having trouble communicating with the Amazon
services. Please sign in again to continue

[CE1004]

10:57 PM - 20 Jun 2017

QO 2 0 O &



Why is there a fear of Chaos when it’s
inevitable?

1
'
i
o

i _IL-

_k 'rl!;."
Slhaveloftenifound that bleeding hearts
have'an ironicifear of their own blood.



Computers are
complicated and they will

break.



Meet “Chaos Carol”




Where is Carol starting her Chaos?




Phase 1: Introducing the Chaos

o..yourdehimwell. for the
Chammnmmm




@nora_js

Start with a steady state

|”

e Define “norma
services

e Determine what the system architecture looks like at a high
level

system and business behavior for your



Microservices



Thereisn't always money in microservices

There's always money2ing
the bananga stand, tsc'iscl




Randomly turn things Recreate things that
off? already happened?




Phase 1.1: Graceful
Restarts and
Degradation (start out
small)



Let the Chaos run

Let people know? automatically?










Working on Chaos experiments is a quick way to meet your
new colleagues. Do it tactfully.



Socialization



Socialization

e Tends to be harder than implementation.
e Part of one’s job as an engineer developing internal tools
is to understand your customer and their needs.

e Relate your Chaos experiments to automated tests, to
SLAs and ultimately, to the customer experience.



Culture & Chaos



Chaos doesn’t cause
problems, it reveals
them.



OPT-OUT MODEL

OPT-IN MODEL



When your customers
are your coworkers.



Internal Tools: Selling 101

e Focus more on asking the questions, rather than

answering them.
e Find customers willing to try first. Then share their stories.

e Be honest. Don’'t make false promises about what Chaos
will do.






Monitoring




Monitoring

® |everage the tools you have.
e |[f you don’t monitor and measure the Chaos, how can you improve? And how

do you know it is working?
e Look at your incidents or JIRA tickets recently. Have they decreased from

when you started Chaos testing?
e Monitor culture around Chaos too. Has the idea of it improved? Are you

tracking adoption rates? Successes?



Don’t lose sight of your
customers.



Whoops, something went wrong...

Netflix Streaming Error
We're having trouble playing this title right now. Please try again later or select a different title.













Strongly consider customer impact
with approaching your Chaos testing
and proceed with caution where
appropriate.






Phase 2: Can we causea
cascading failure?




Cascading failures often lie dormant for
a long time until they are triggered by
an unusual set of circumstances.



Phase 3: Building a Failure
Injection Library

https://github.com/norajones/FailurelnjectionLibrary



let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name
do! chaos
return! service req




let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name
do! chaos
return! service req




let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name
do! chaos
return! service req




let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name
do! chaos
return! service req




let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {

- if shouldChaos() then

printfn "%s" name
do! chaos
return! service req




let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name

= do! chaos

return! service req




Types of Chaos Failures

let failWithException (ex:System.Exception) = async {
raise ex

}

let introduceLatency (latencyMs:unit —> int) = async {
// introduce latency
do! Async.Sleep (latencyMs())




Types of Chaos Failures

let failWithException (ex:System.Exception) = async {
raise ex

}

let introduceLatency (latencyMs:unit —> int) = async {
// introduce latency
do! Async.Sleep (latencyMs())




// Defines the requirements that need to be met before injecting chaos
let simpleTimeBasedFailure () = System.DateTime.Now.Millisecond = @

let simpleTimeBasedLatency (latency:int) =

fun () —
if simpleTimeBasedFailure() then latency
else @




// API
let defChaos (a) =
a

|> chaos '"chaos exception" simpleTimeBasedFailure (failWithException (new System.OutOfMemoryException("chaos")))

|> chaos "chaos latency 5sec" simpleTimeBasedFailure (introducelLatency (simpleTimeBasedLatency 5000))




// API
let defChaos (a) =
a

|> chaos '"chaos exception" simpleTimeBasedFailure (failWithException (new System.OutOfMemoryException("chaos")))

|> chaos "chaos latency 5sec" simpleTimeBasedFailure (introducelLatency (simpleTimeBasedLatency 5000))




Phase 4: Chaos
Automation Platform
“ChAP”



@nora_js

ChAP

e Designed to overcome the problems of FIT (failure
injection testing)

e Focused on minimizing blast radius

e Concentrates failures onto dedicated instances

e More: orchestration, segmentation, automation, and safety



ChAP

99% AP Persona-
lization

0.5%

API Control

0.5%






ChAP Goal: Chaos all the
things and run all the
time.



Phase 5: Targeted Chaos



Phase 5: Targeted Chaos



@nora_js

Targeted Chaos: Kafka Problems

e Monitoring

e Dealing with offsets, especially during geo replication
efforts

e High consumer read levels



@nora_js

Targeted Chaos: Kafka Ideas

Complete topic deletion

Partial Topic Deletion

Feeding the consumers bad offsets
Random Packet Drops

High Load on Topics

Deleting segments, random and structured



It’s important to have a steady state with Targeted
Chaos before you begin.



Record Chaos Success Stories
(especially important during
adoption)



@nora_js

“We ran a chaos experiment which
verifies that our fallback path works

(crucial for our availability) and it
successfully caught a issue in the

fallback path and the issue was

resolved before it resulted in any

availability incident!”



@nora_js

“While [failing calls] we discovered an increase in
license requests for the experiment cluster even
though fallbacks were all successful. This likely
means that whoever was consuming the fallback

was retrying the call, causing an increase In
license requests.”



@nora_js

Engagement Guides

e Know your company’s culture.
e Set goals for each level of Chaos adoption

you expecit.
® Define success criteria.



Should you develop Let them do it on their
experiments for the own?
service teams?




@nora_js

Takeaways

e Pervasive cultural patterns play out in
advocating for Chaos.

e There will be “adventure” choices you need to
make when choosing your Chaos.

e Measure your metrics for business and cultural

SUcCcess.



Questions?

@nora_js
chaos@netflix.com



