
Defense in Depth: In Depth
Presented by: Chelsea H. Komlo

About me
- Software engineer, privacy and security engineer
- HashiCorp, ThoughtWorks, Tor
- Worked in 5 countries and two languages

About this talk
- NOT how to do security
- The purpose of this talk to discuss how to think defensively about your system

at every level.

What I often come across when talking about security

You could have the most
awesome encryption
standard, but pressing the
enter key could sidestep all
authentication.

One vulnerable third-party library leads to hundreds
of millions of sensitive PII being stolen

Security
is
holistic.

Defense in depth is necessary for a secure system
Goal: One vulnerability won’t result in compromising the entire system.

We’ll look at defense in depth from a variety of
viewpoints

- Low level (code)
- Mid level (teams)
- High level (architecture)
- Highest level (product strategy)

Defense in depth: Code
- Maintain code quality
- Leverage automated tooling
- Meaningful automated tests

Defense in Depth: Maintain code quality
- Antipattern: Making assumptions when writing code.
- Pattern: Code should written defensively
- Takeaway: Security vulnerabilities are bugs!

Example: Brittle code

// Should never be called with nil
func sayName(p *Person) {
 fmt.Printf(“%s”, p.Name)
}

Defense in Depth: Leverage automated tooling
- Antipattern: Minimal compile-time validation
- Pattern: Enable language-specific compile-time checks
- Takeaway: Humans fail! Leverage automated tooling where possible

Example: Automated code analysis
- Go Race Detector
- ASAN
- GCC: -Wall -Wextra

Defense in Depth: Meaningful automated test cases
- Antipattern: Adding a single test case for a function
- Pattern: Having test cases that exercise your code with varying granularity.
- Takeaway: Don’t be single-dimensional in your tests!

Testing at multiple levels:
- Unit
- Integration
- E2E
- Soak
- Time-based
- Fuzzing

Defense in depth: Teams
- No more “rock stars”
- No “throw over the wall” security requirements

Defense in Depth: No more rock stars
- Antipattern: Someone on the team pushing lots of code to master without a

review.
- Pattern: All code goes through thorough code review (from anyone on the

team)
- Takeaway: Security is a team sport!

Defense in Depth: No “throw over the wall” security
requirements

- Antipattern: Long list of requirements from your security team.
- Pattern: Development teams and security teams closely collaborating.
- Takeaway: Collaborate.

Defense in depth: Architecture
- Managing evolution cleanly
- Automate infrastructure

Defense in Depth: Manage evolution cleanly
- Anitipattern: Layers of “cruft” and deprecated features.
- Pattern: Remove deprecated code paths, strive for minimal branching.
- Takeaway: Your attacker will know your system better than you will!

Example: OpenSSL versus OpenBSD’s LibreSSL

Over 90,000 lines of code
removed.

Defense in depth: Automate infrastructure
- Anitipattern: Bespoke, artisanal server management.
- Pattern: Use automated tooling to manage your cluster.
- Takeaway: The less manual effort, the fewer “forgotten holes.”

Example: Cluster schedulers for Secops

Defense in depth: Product Strategy
- Privacy and security serve the same ends
- Consider your users’ threat model

Defense in Depth: Privacy and security serve the
same ends

- Antipattern: Collecting all possible data
- Pattern: Collect only what is strictly necessary
- Takeaway: Strive for privacy by design, as opposed to retroactive privacy.

Example: Encrypted messaging applications

Defense in Depth: Consider your users’ threat model

- Antipattern: Planning for only your organization’s security needs
- Pattern: Consider every user’s needs, including at-risk users in your threat

model
- Takeaway: Be aware of decisions that place users at greater risk

Example: Sensitive data and third parties

Example: Consider vulnerable users

Security must be holistic!
This means all roles, all people, working together thoughtfully.

There is no partial credit in security!

Thank you!

