Defense in Depth: In Depth

Presented by: Chelsea H. Komlo

About me

- Software engineer, privacy and security engineer
- HashiCorp, ThoughtWorks, Tor
- Worked in 5 countries and two languages

About this talk

- NOT how to do security
- The purpose of this talk to discuss how to think defensively about your system
at every level.

What | often come across when talking about security

Users & Groups

System Preferences is trying to unlock Users &
Groups preferences.

You could have the most @ Jicov | L T
awesome encryption
standard, but pressing the
enter key could sidestep all

. . Cancel | Unlock |
authentication.

User Name: root

Password: |

Contacts Card: Open...
Allov

v Allow user to administe

m Login Options

Enable parental controls Open Parental Controls...

Authenticating...

One vulnerable third-party library leads to hundreds
of millions of sensitive Pll being stolen

EQUIFAX

Security
IS
holistic.

SPEAR!

Defense in depth is necessary for a secure system

Goal: One vulnerability won’t result in compromising the entire system.

We’'ll look at defense in depth from a variety of
viewpoints

- Low level (code)

- Mid level (teams)

- High level (architecture)

- Highest level (product strategy)

Defense in depth: Code

- Maintain code quality
- Leverage automated tooling
- Meaningful automated tests

Defense in Depth: Maintain code quality

- Antipattern: Making assumptions when writing code.
- Pattern: Code should written defensively
- Takeaway: Security vulnerabilities are bugs!

Example: Brittle code

/I Should never be called with nil
func sayName(p *Person) {
fmt.Printf(“%s”, p.Name)

}

Defense in Depth: Leverage automated tooling

- Antipattern: Minimal compile-time validation
- Pattern: Enable language-specific compile-time checks
- Takeaway: Humans fail! Leverage automated tooling where possible

Example: Automated code analysis

- Go Race Detector
- ASAN
- GCC: -Wall -Wextra

Defense in Depth: Meaningful automated test cases

- Antipattern: Adding a single test case for a function
- Pattern: Having test cases that exercise your code with varying granularity.
- Takeaway: Don'’t be single-dimensional in your tests!

Testing at multiple levels:

- Unit

- Integration
- E2E

- Soak

- Time-based
- Fuzzing

Defense in depth: Teams

- No more “rock stars”
- No “throw over the wall” security requirements

Defense in Depth: No more rock stars

- Antipattern: Someone on the team pushing lots of code to master without a
review.

- Pattern: All code goes through thorough code review (from anyone on the
team)

- Takeaway: Security is a team sport!

Defense in Depth: No “throw over the wall” security
requirements

- Antipattern: Long list of requirements from your security team.
- Pattern: Development teams and security teams closely collaborating.
- Takeaway: Collaborate.

Defense in depth: Architecture

- Managing evolution cleanly
- Automate infrastructure

Defense in Depth: Manage evolution cleanly

- Anitipattern: Layers of “cruft” and deprecated features.
- Pattern: Remove deprecated code paths, strive for minimal branching.
- Takeaway: Your attacker will know your system better than you will!

Example: OpenSSL versus OpenBSD’s LibreSSL

Over 90,000 lines of code
removed.

LibreSSL

Defense in depth: Automate infrastructure

- Anitipattern: Bespoke, artisanal server management.
- Pattern: Use automated tooling to manage your cluster.
- Takeaway: The less manual effort, the fewer “forgotten holes.”

Example: Cluster schedulers for Secops

Activities @ Google Chrome ~ Sat 21:12

56 B Cluster scheduling = x

< C | & Secure | https:/medium.com/@henri

o
About membership Medlum Sign in

l'}‘ Henrik Johansen

Feb 24 - 5 min read

Cluster scheduling systems for large scale
Security Operations

There are a number of scenarios where it’s very useful to have the capabilities
to run arbitrary jobs against any number of machines in a secure and
automated fashion—Threat Hunting, Incident response, coordinated eviction
of entrenched adversaries, Forensics, etc.

I have spent some time recently with HashiCorp’s Nomad—a very fast and
secure cluster scheduling system to explore how such a system might be
applicable to the field of Information Security.

TL;DR

(" Never miss a story from Henrik Johansen, when you sign up for m
w Medium. Learn more

Defense in depth: Product Strategy

- Privacy and security serve the same ends
- Consider your users’ threat model

Defense in Depth: Privacy and security serve the
same ends

- Antipattern: Collecting all possible data
- Pattern: Collect only what is strictly necessary
- Takeaway: Strive for privacy by design, as opposed to retroactive privacy.

Example: Encrypted messaging applications

Defense in Depth: Consider your users’ threat model

- Antipattern: Planning for only your organization’s security needs

- Pattern: Consider every user’s needs, including at-risk users in your threat
model

- Takeaway: Be aware of decisions that place users at greater risk

Example: Sensitive data and third parties

@ %
The POW =

7 O Big Data ang psychogrg

Example: Consider vulnerable users

The Implications of the Intermet of
Things (loT) on Victims of Gender-

Based Domestic Violence ano
Abuse (G-loT)

A 2017-18 Social Science Plus Pilot Project

Security must be holistic!

This means all roles, all people, working together thoughtfully.

There is no partial credit in security!

Thank you!

