
Designing
Events First
Microservices

Jonas Bonér
@jboner

So, you want to do

microservices?

Make sure you don’t end up with

Microliths

Make sure you don’t end up with

Microliths

 We can do better than this

Events First
Domain Driven

Design

“When you start modeling events, it
forces you to think about the behaviour
of the system. As opposed to thinking

about the structure of the system.”
- Greg Young

A Decade of DDD, CQRS, Event Sourcing, Greg Young (Presentation from 2016)

✴ Don’t focus on the things
 The Nouns
 The Domain Objects

✴ Don’t focus on the things
 The Nouns
 The Domain Objects

✴ Focus on what happens
 The Verbs
 The Events

What is an

Event?

The Nature of Events

✴ Events represent Facts of information
➡ Facts are immutable

➡ Facts Accrue - Knowledge can only grow

The Nature of Events

✴ Events represent Facts of information
➡ Facts are immutable

➡ Facts Accrue - Knowledge can only grow

✴ Events/Facts can be disregarded/Ignored

The Nature of Events

✴ Events represent Facts of information
➡ Facts are immutable

➡ Facts Accrue - Knowledge can only grow

✴ Events/Facts can be disregarded/Ignored
✴ Events/Facts Can not be retracted (once accepted)

The Nature of Events

✴ Events represent Facts of information
➡ Facts are immutable

➡ Facts Accrue - Knowledge can only grow

✴ Events/Facts can be disregarded/Ignored
✴ Events/Facts Can not be retracted (once accepted)
✴ Events/Facts Can not be deleted (once accepted)

➡ Might be needed for legal or moral reasons

The Nature of Events

✴ Events represent Facts of information
➡ Facts are immutable

➡ Facts Accrue - Knowledge can only grow

✴ Events/Facts can be disregarded/Ignored
✴ Events/Facts Can not be retracted (once accepted)
✴ Events/Facts Can not be deleted (once accepted)

➡ Might be needed for legal or moral reasons

✴ Events/Facts (new) can invalidate existing Facts

The Nature of Events

Mine the

Facts

 Event Storming

Event Driven Design

✴ IntentS
➡ Communication
➡ Conversations
➡ Expectations
➡ Contracts
➡ Control Transfer

Event Driven Design

✴ IntentS
➡ Communication
➡ Conversations
➡ Expectations
➡ Contracts
➡ Control Transfer

Event Driven Design

✴ Facts
➡ State
➡ History
➡ Causality
➡ Notifications
➡ State Transfer

✴ IntentS
➡ Communication
➡ Conversations
➡ Expectations
➡ Contracts
➡ Control Transfer

Event Driven Design

✴ Facts
➡ State
➡ History
➡ Causality
➡ Notifications
➡ State Transfer

 Commands

✴ IntentS
➡ Communication
➡ Conversations
➡ Expectations
➡ Contracts
➡ Control Transfer

Event Driven Design

✴ Facts
➡ State
➡ History
➡ Causality
➡ Notifications
➡ State Transfer

 Commands Events

Event Driven Design

✴Commands
➡ Object form of method/Action request
➡ Imperative: CreateOrder, ShipProduct

Event Driven Design

✴Commands
➡ Object form of method/Action request
➡ Imperative: CreateOrder, ShipProduct

✴Reactions
➡ Represents side-effects

Event Driven Design

✴Commands
➡ Object form of method/Action request
➡ Imperative: CreateOrder, ShipProduct

✴Reactions
➡ Represents side-effects

✴Events
➡ Represents something that has happened
➡ Past-tense: OrderCreated, ProductShipped

Event Driven Design

Commands Eventsvs

Commands Eventsvs
1. All about intent 1. Intentless

Commands Eventsvs
1. All about intent
2. Directed

1. Intentless
2. Anonymous

Commands Eventsvs
1. All about intent
2. Directed
3. Single addressable
destination

1. Intentless
2. Anonymous
3. Just happens - for
others (0-N) to observe

Commands Eventsvs
1. All about intent
2. Directed
3. Single addressable
destination

4. Models personal
communication

1. Intentless
2. Anonymous
3. Just happens - for
others (0-N) to observe

4. Models broadcast
(speakers corner)

Commands Eventsvs
1. All about intent
2. Directed
3. Single addressable
destination

4. Models personal
communication

5. Distributed focus

1. Intentless
2. Anonymous
3. Just happens - for
others (0-N) to observe

4. Models broadcast
(speakers corner)

5. Local focus

Commands Eventsvs
1. All about intent
2. Directed
3. Single addressable
destination

4. Models personal
communication

5. Distributed focus
6. Command & Control

1. Intentless
2. Anonymous
3. Just happens - for
others (0-N) to observe

4. Models broadcast
(speakers corner)

5. Local focus
6. Autonomy

Let the Events Define the

Bounded Context

Event Driven

Services

1. REceive & react (or not)  
 to facts* that are coming its way

Event Driven

Services

1. REceive & react (or not)  
 to facts* that are coming its way

2. Publish new facts* asynchronously  
 to the rest of the world

Event Driven

Services

1. REceive & react (or not)  
 to facts* that are coming its way

2. Publish new facts* asynchronously  
 to the rest of the world

3. Invert the control flow 
 to minimize coupling and increase autonomy

Event Driven

Services

1. REceive & react (or not)  
 to facts* that are coming its way

2. Publish new facts* asynchronously  
 to the rest of the world

3. Invert the control flow 
 to minimize coupling and increase autonomy

Event Driven

Services

*Facts == Immutable Events

Mutable State Is Fine
But Needs To Be

Contained
And Non Observable

Publish Facts
To Outside World

✴ Maintains Integrity & consistency

✴ Is our Unit of Consistency

✴ Is our Unit of Failure

✴ Is our Unit of Determinism

✴ Is fully Autonomous

The Aggregate

Event Driven

Services

Event Driven

Services

Event Driven

Services

Command

Event Driven

Services

Command

Event Driven

Services

Command

Event Driven

Services

Command

Event

Event Stream

Event Driven

Services

Command

Event

Event Event
Event Stream

Event Driven

Services

Command

Event

Event Event
Event Stream

Event Driven

Services

Command

Event

Event Event
Event Stream

Event Driven

Services

Command

Event

Event Event
Event Stream

Event Driven

Services

Command

Event

Event Event
Event Stream

Event Driven

Services

Eventual
Consistency

Command

Event

Event Event
Event Stream

Event
Stream

Use The

Event
Stream

Use The

as the communication fabric

Event
Stream

Use The

Event
Stream

Use The

as the integration fabric

Event
Stream

Use The

Event
Stream

Use The

as the replication fabric

Event
Stream

Use The

Event
Stream

Use The

as the consensus fabric

Event
Stream

Use The

Event
Stream

Use The

as the Persistence fabric

The Problem With
CRUD Services

✴ CRUD is fine for totally isolated data

The Problem With
CRUD Services

✴ CRUD is fine for totally isolated data

✴ But, cross CRUD services consistency

The Problem With
CRUD Services

✴ CRUD is fine for totally isolated data

✴ But, cross CRUD services consistency

➡ Is hard ⇨ No Joins

The Problem With
CRUD Services

✴ CRUD is fine for totally isolated data

✴ But, cross CRUD services consistency

➡ Is hard ⇨ No Joins

➡ Has ad-hoc & weak guarantees

The Problem With
CRUD Services

✴ CRUD is fine for totally isolated data

✴ But, cross CRUD services consistency

➡ Is hard ⇨ No Joins

➡ Has ad-hoc & weak guarantees

The Problem With
CRUD Services

“Two-phase commit is the
anti-availability protocol.”

- Pat Helland

Standing on Distributed Shoulders of Giants - Pat Helland

STRONG
Consistency
Is the wrong default
In distributed systems

STRONG
Consistency
Is the wrong default
In distributed systems

What can we do?

Eventual
Consistency

We have to rely on

Eventual
Consistency

We have to rely on

But relax—it’s how the world works

Embrace
Reality

We Need to

Embrace
Reality

We Need to

Not Fight it

Information
Has Latency

Information Is Always

From the Past

Welcome To The Wild Ocean Of

Non Determinism
Distributed Systems

“In a system which cannot count on
distributed transactions, the management
of uncertainty must be implemented in the

business logic.”
- Pat Helland

Life Beyond Distributed Transactions, Pat Helland (2007)

We Need To Model

Uncertainty

Events Can Lead To Greater

Certainty

“An autonomus component can only
promise its own behavior.”

“Autonomy makes information local,
leading to greater certainty and stability.”

- Mark Burgess

In Search of Certainty, Thinking in Promises - Mark Burgess

Events Can Help Us Craft
Autonomous Islands
Of Determinism

Data on the inside vs Data on the outside - Pat Helland

Data on the inside vs Data on the outside - Pat Helland

Inside Data
 Our current present ⇨ state

Data on the inside vs Data on the outside - Pat Helland

Inside Data
 Our current present ⇨ state
Outside Data
 Blast from the past ⇨ Events/facts

Data on the inside vs Data on the outside - Pat Helland

Inside Data
 Our current present ⇨ state
Outside Data
 Blast from the past ⇨ Events/facts
Between Services
 Hope for the future ⇨ commands

A system of microservices is a
never ending stream towards convergence

There Is No Now

A system of microservices is a
never ending stream towards convergence

Resilience
is by

Design

Photo courtesy of FEMA/Joselyne Augustino

Events Can Help Us

Manage

Failure
Instead Of Trying To Avoid It

Requirements for a
Sane Failure Model

1. Contained—Avoid cascading failures
2. Reified—as Events
3. Signalled—Asynchronously
4. Observed—by 1-N
5. Managed—Outside failed Context

Failures need to be

Event Based
Persistence

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

Service B

Service A

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

Service B

Service A

CRUD

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Service B

Service A

TABLE A

CRUD

TABLE B

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Service B

Service A

TABLE A

CRUD

TABLE B

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Service B

Service A

TABLE A

CRUD

TABLE B

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Atomic Update & event

Service B

Service A

TABLE A

CRUD

TABLE B

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Atomic Update & event

Service C

Service B

Service A

TABLE A

CRUD

TABLE B

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Atomic Update & event

Service C

Service B

Service A

TABLE A

CRUD

TABLE B

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Atomic Update & event

Service C

Service B

Service A

TABLE A

CRUD

TABLE B

JOINS
Table A
Table B

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Atomic Update & event

Service C

Service B

Service A

TABLE A

CRUD

TABLE B

JOINS
Table A
Table B

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Read
Only

Atomic Update & event

Service C

Service B

Service A

Eventual
Consistency

TABLE A

CRUD

TABLE B

JOINS
Table A
Table B

You can use CRUD
Together with Event Streams

To get an internally consistent Materialized View

CRUD

Read
Only

Atomic Update & event

“Update-in-place strikes systems
designers as a cardinal sin: it violates

traditional accounting practices that have
been observed for hundreds of years.”

- jim Gray

The Transaction Concept, Jim Gray (1981)

“The truth is the log.
The database is a cache
of a subset of the log.”

- Pat Helland

Immutability Changes Everything, Pat Helland (2015)

Event Logging
The Bedrock

Event Sourcing
A Cure For the Cardinal Sin

Event
Sourced
Services

Happy Path

Event
Sourced
Services

Happy Path

Event
Sourced
Services

1) Receive and verify Command
(“ApprovePayment”)

Happy Path

Event
Sourced
Services

2) Create new Event
(“PaymentApproved”)

1) Receive and verify Command
(“ApprovePayment”)

Happy Path

Event
Sourced
Services

2) Create new Event
(“PaymentApproved”)

1) Receive and verify Command
(“ApprovePayment”)

3) Append Event
to Event Log

Happy Path

Event
Sourced
Services

2) Create new Event
(“PaymentApproved”)

1) Receive and verify Command
(“ApprovePayment”)

3) Append Event
to Event Log

4) Update internal
component state

Happy Path

Event
Sourced
Services

5) Run side-effects
(approve the payment)

2) Create new Event
(“PaymentApproved”)

1) Receive and verify Command
(“ApprovePayment”)

3) Append Event
to Event Log

4) Update internal
component state

SAD Path - recover from failure

Happy Path

Event
Sourced
Services

5) Run side-effects
(approve the payment)

2) Create new Event
(“PaymentApproved”)

1) Receive and verify Command
(“ApprovePayment”)

3) Append Event
to Event Log

4) Update internal
component state

SAD Path - recover from failure

Happy Path

Event
Sourced
Services

5) Run side-effects
(approve the payment)

2) Create new Event
(“PaymentApproved”)

1) Receive and verify Command
(“ApprovePayment”)

3) Append Event
to Event Log

4) Update internal
component state

1) Rehydrate Events
from Event Log

SAD Path - recover from failure

Happy Path

Event
Sourced
Services

5) Run side-effects
(approve the payment)

2) Create new Event
(“PaymentApproved”)

1) Receive and verify Command
(“ApprovePayment”)

3) Append Event
to Event Log

4) Update internal
component state

1) Rehydrate Events
from Event Log

2) Update internal
component state

SAD Path - recover from failure

Happy Path

Event
Sourced
Services

5) Run side-effects
(approve the payment)

2) Create new Event
(“PaymentApproved”)

1) Receive and verify Command
(“ApprovePayment”)

3) Append Event
to Event Log

4) Update internal
component state

1) Rehydrate Events
from Event Log

2) Update internal
component state

Memory Image

Event Sourcing

Event Sourcing

✴ One single Source of Truth with All history

Event Sourcing

✴ One single Source of Truth with All history

✴ Allows for Memory Image (Durable In-Memory State)

Event Sourcing

✴ One single Source of Truth with All history

✴ Allows for Memory Image (Durable In-Memory State)
✴ Avoids the Object-relational mismatch

Event Sourcing

✴ One single Source of Truth with All history

✴ Allows for Memory Image (Durable In-Memory State)
✴ Avoids the Object-relational mismatch

✴ Allows others to Subscribe to state changes

Event Sourcing

✴ One single Source of Truth with All history

✴ Allows for Memory Image (Durable In-Memory State)
✴ Avoids the Object-relational mismatch

✴ Allows others to Subscribe to state changes

✴ Has good Mechanical sympathy 
 (Single Writer Principle etc.)

Untangle Your
Read and Write Models

With CQRS

CQRS

CQRS

CQRS

Write Side Model

Commands

CQRS

Write Side Model

Write to Event Log

Commands

CQRS

Write Side Model

Events

Write to Event Log

Commands

CQRS

Write Side Model

Events

Events

Write to Event Log

Commands

CQRS

Read Side Model

Write Side Model

Events

Events

Read Data Store

Write to Event Log

Commands

CQRS

Read Side Model

Write Side Model

Events

Queries

Events

Read Data Store

Write to Event Log

Commands

CQRS

Read Side Model

Write Side Model

Events

Queries

Events

Read Data Store

Write to Event Log

Eventual
Consistency

Commands

Events
Allow Us To Manage

Time

“Modelling events forces you to have a  
temporal focus on what’s going on in the system.

Time becomes a crucial factor of the system.”
- Greg Young

A Decade of DDD, CQRS, Event Sourcing, Greg Young (Presentation from 2016)

✴ Event is a snapshot in time
✴ Event ID is an index for time
✴ Event Log is our full history

 The database of Our past

 The path to Our present

Event Sourcing
Allows Us To

Model Time

Event Sourcing
Allows For

Time Travel

Event Sourcing
Allows For

Time Travel

Event Sourcing
Allows For

Time Travel

✴Replay the log for historic debugging
✴Replay the log for auditing & traceability
✴Replay the log on failure

✴Replay the log for replication

We Can Even Fork the Past

...Or Join Two Distinct Pasts

Key Takeaways

Key Takeaways

Events-First design helps you to:
✴ reduce risk when modernizing applications
✴ Move Faster towards a Resilient and Scalable architecture
✴ Design autonomous services
✴ Balance Certainty and Uncertainty

Key Takeaways

Events-First design helps you to:
✴ reduce risk when modernizing applications
✴ Move Faster towards a Resilient and Scalable architecture
✴ Design autonomous services
✴ Balance Certainty and Uncertainty

Event Logging allows you to:
✴ AVOID CRUD and ORM
✴ take control of your system’s history
✴ time-travel

✴ Balance Strong and eventual consistency

http://akka.io

http://akka.io

Learn More
Download my latest book for free at:
bit.ly/reactive-microsystems

http://bit.ly/reactive-microsystems

