
@mattklein123

Lyft's Envoy:
Embracing a Service Mesh

Matt Klein / @mattklein123, Software Engineer @Lyft

@mattklein123@mattklein123

Lyft ~5 years ago

PHP / Apache
monolith

MongoDB

InternetClients AWS ELB

Simple! No microservices! (but still not that simple)

@mattklein123@mattklein123

Lyft ~3 years ago

PHP / Apache
monolith

(+haproxy/nsq)

MongoDB

Internet

Clients

AWS external
ELB

DynamoDB

AWS internal
ELBs

Python services

Not simple! Microservices! With monolith!
(and some haproxy/nsq)

@mattklein123@mattklein123

Lyft’s microservice architecture problems 3 years ago

● Multiple Languages and frameworks.
● Many Protocols (HTTP/1, HTTP/2, gRPC, databases, caching, etc.).
● Black box load balancers (AWS ELB).
● Lack of consistent Observability (stats, tracing, and logging).
● Partial or no implementations of retry, circuit breaking, rate limiting,

timeouts, and other distributed systems best practices.
● Minimal Authentication and Authorization.
● Per language libraries for service calls.
● Extremely difficult to debug latency and failures.
● Developers did not trust the microservice architecture.

@mattklein123@mattklein123

Lyft’s architecture problems 3 years ago

A really big and confusing mess...

@mattklein123@mattklein123

What is Envoy and the service mesh?

The network should be transparent to applications. When
network and application problems do occur it should be easy to
determine the source of the problem.

@mattklein123@mattklein123

Service mesh refresher

Service A

Sidecar proxy

Service B

Sidecar proxy

Service A

Sidecar proxy

Service A

Sidecar proxy

Service A

Sidecar proxy

Service C

Sidecar proxy

Service A

Sidecar proxy

Service D

Sidecar proxy

@mattklein123@mattklein123

Envoy

● Out of process architecture
● High performance / low latency code base
● L3/L4 filter architecture
● HTTP L7 filter architecture
● HTTP/2 first
● Service discovery and active/passive health checking
● Advanced load balancing
● Best in class observability (stats, logging, and tracing)
● Authentication and authorization
● Edge proxy

@mattklein123@mattklein123

Observability

● Observability is by far the most important thing that Envoy and the service
mesh provides.

● Having all traffic transit through Envoy provides a single place to:
○ Produce consistent statistics for every hop.
○ Create and propagate a stable request ID / tracing context.
○ Consistent logging.
○ Distributed tracing.

@mattklein123@mattklein123

Lyft today

Legacy monolith

Internet

Clients

Front / edge

Python services

Obs, obs, obs, obs, obs, obs...

Go services

MongoDB

DynamoDB

Stats / tracing /
logging

Envoy manager
(xDS server)

Redis

External partners

@mattklein123@mattklein123

Per service auto-generated panel

Links to interesting
data

Clickable traces
from top-level

panel

Per-caller
information

@mattklein123@mattklein123

Distributed tracing

@mattklein123@mattklein123

Logging

@mattklein123@mattklein123

Service to service template dashboard

Template with drop down for every service

@mattklein123@mattklein123

Edge proxy

Per-upstream cluster RPS Per-upstream cluster 5xx Per-upstream cluster timings

@mattklein123@mattklein123

Global health dashboard

@mattklein123@mattklein123

Envoy thin clients @Lyft

from lyft.api_client import EnvoyClient

switchboard_client = EnvoyClient(

 service='switchboard'

)

msg = {'template': 'breaksignout'}

headers = {'x-lyft-user-id': 12345647363394}

switchboard_client.post("/v2/messages", data=msg, headers=headers)

● Abstract away egress port
● Request ID/tracing propagation
● Guide devs into good timeout, retry, etc. policies
● Similar thin clients for Go and PHP

@mattklein123@mattklein123

Envoy config management via xDS APIs

● Envoy is a universal data plane
● xDS == * Discovery Service (various configuration APIs). E.g.,:

○ LDS == Listener Discovery Service
○ CDS == Cluster Discovery Service

● Both gRPC streaming and JSON/YAML REST via proto3!
● Central management system can control a fleet of Envoys avoiding per-proxy

config file hell
● Global bootstrap config for every Envoy, rest taken careof by the

management server
● Envoys + xDS + management system == fleet wide traffic management

distributed system

@mattklein123@mattklein123

Envoy config management via xDS APIs @lyft

Cluster manager

Listener
manager

Route manager

Legacy
discovery
service

Envoy manager
service

Envoy static
config repo

Service
manifests

S3

Registration cron
jobs

SDS

CDS

RDS

LDS

Only need a very tiny bootstrap config for each envoy...

@mattklein123@mattklein123

Lyft’s Envoy deployment

● 100s of services
● 10Ks of hosts
● 5-10M mesh RPS
● Majority h2
● All edge, StS, and vast majority of external partners
● MongoDB, DynamoDB, Spanner, Redis
● Evolving configuration management system as we move to K8s

@mattklein123@mattklein123

Envoy adoption

And lots more not listed...

@mattklein123@mattklein123

Why Envoy + Q&A

● Quality + velocity
● Extensibility
● Eventually consistent configuration API
● No “open core” / paid premium version. It’s all there
● Community, community, community

Critical mass has nearly been achieved. Becoming too costly to not use?

