
Everyday Efficiencies
Todd L. Montgomery
@toddlmontgomery

StoneTor



Why should we care?
Understanding (In)Efficiencies

Efficiencies anyone can do

Everyday Efficiencies



https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#344456665a30

https://www.datacenterdynamics.com/opinions/power-consumption-data-centers-global-problem/

https://www.nature.com/articles/d41586-018-06610-y



Efficiency/Performance

Non-Functional Requirement



Performance
Quality

Robustness
Safety

Stability
Usability

https://en.wikipedia.org/wiki/Non-functional_requirement



https://en.wikipedia.org/wiki/Non-functional_requirement



When not met
is the 

system not “Non-Functional”?



“Non”-Functional Requirements
Are

Unspoken / Incomplete 
Functional Requirements



Performance (Quality/Security/etc)

At best, an afterthought!



It* isn’t an Issue
…

Until it (suddenly) is

* - Performance/Quality/Security…



And then… 

It is often too late



In the age of cloud…

Just throw machines at it



Universal Scalability Law 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

1 2 4 8 16 32 64 128 256 512 1024 

Sp
e

e
d

up
 

Processors 

Amdahl USL 



That Real Quote on
 

“Premature Optimization” and the root of 
all evil



https://en.wikiquote.org/wiki/Donald_Knuth



https://en.wikiquote.org/wiki/Donald_Knuth



https://en.wikipedia.org/wiki/Pareto_principle

Pareto Principle

80/20 Rule



Let Data Guide “Where”



“But it doesn’t have to be fast!!!”



“But it doesn’t have to be fast!!!”

Doesn’t have to be SLOW either!



“But it doesn’t have to be fast!!!”
“But it doesn’t have to be secure!!!”

“But it doesn’t have to ____!!!”

“But it doesn’t have to WORK!!!??“



We seem to assume 
speed/security/quality/etc.

 is a “special” characteristic added… later



“But it doesn’t have to be ____*!!!”

“…It’s not my fault!”

* - Fast/Work/Secure…



Other Engineering Disciplines

Top speed of Sedan vs. F1



2x? 3x? 10x?

Do our systems do 
100M, 30M, 3K, or 300 tps?



Why are things inefficient?



Not Enough Time?
Too “Lazy”?

Gap(s) in Knowledge?
Too Much Complexity?



End Result

Bad 
Design 

Choices



Design



Performance
Quality

Security

Start with Design



Everyday Efficiencies

Be Lazy
Don’t reward bad ideas

Don’t be Naive



Good Engineering is Laziness

Too lazy to do something complicated
Never too lazy to stop making it better



Don’t reward bad ideas

Don’t let bad ideas stay around
Don’t be afraid to move on

Don’t be afraid to try something new



Absolutes are for the naive



Always use X!
Never use Y!

Better: Favor X over Y



Concrete Suggestions



Ownership, Dependency, & Coupling

Complexity Kills

Layers of Abstraction are not free

Manage Your Resources



Understand Your Tools
(OS, language, CPU, disk, libs, etc.)

The Compiler is BETTER than you

Idioms Matter



Abstract Later

Design for Composition



Counted vs. Uncounted Loops
Predictable Branches
Simple Conditionals

Stack Allocation
Favor Arrays over Lists 

Primitive Data Structures



Everyday Efficiencies

Be Lazy
Don’t reward bad ideas

Don’t be Naive
All starts with Design



Twitter: @toddlmontgomery

Thank You!

Questions?
StoneTor


