ﬁStoAneTor

Everyday Efficiencies

Todd L. Montgomery
@toddimontgomery

Everyday Efficiencies

Why should we care?
Understanding (In)Efficiencies
Efficiencies anyone can do

How to stop data centres from gobbling up the
world’s electricity

Power consumption in data centers
1s a global problem

20,980 views | Dec 15, 2017, 08:30am

Why Energy Is A Big And
Rapidly Growing Problem For
Data Centers

Radoslav Danilak Forbes Councils
Forbes Technology Council CommunityVoice ®

https://www.nature.comy/articles/d41586-018-06610-y

9,000 terawatt hours (TWh)

~ ENERGY FORECAST 20.9% of projected
Widely cited forecasts suggest that the electricity demand

_ total electricity demand of information and
communications technology (ICT) will
accelerate in the 2020s, and that data
centres will take a larger slice.

B Networks (wireless and wired)
M Production of ICT

Consumer devices (televisions,
computers, mobile phones)

M Data centres

0
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

The chart above is an ‘expected case’ projection from Anders Andrae, a
specialist in sustainable ICT. In his ‘best case’ scenario, ICT grows to only
8% of total electricity demand by 2030, rather than to 21%.

Global electricity demand

2015 I I Other demand

> 2030 il
5030 L]
0 40,000 TWh

Efficiency/Performance

Non-Functional Requirement

Performance
Quality
Robustness
Safety
Stability
Usability

httos://en.wikipedia.orq/wiki/Non-functional requirement

Examples |edit]

A system may be required to present the user with a display of the number of records in a database. This is a functional requirement. How up-to-date [update] this number needs to be, is a non-functional requirement. If the number

needs to be updated in real time, the system architects must ensure that the system is capable of updating the [displayed] record count within an acceptably short interval of the number of records changing.

Sufficient network bandwidth may be a non-functional requirement of a system. Other examples include:

Accessibility

Auditability and control

Availability (see service level agreement)

Backup

Capacity, current and forecast

Certification

Compliance

Configuration management

Dependency on other parties

Deployment

Documentation

Disaster recovery

Efficiency (resource consumption for given load)
Effectiveness (resulting performance in relation to effort)
Emotional factors (like fun or absorbing or has "Wow! Factor")
Environmental protection

Escrow

Exploitability

Extensibility (adding features, and carry-forward of customizations at next major version upgrade)
Failure management

Fault tolerance (e.g. Operational System Monitoring, Measuring, and Management)
Legal and licensing issues or patent-infringement-avoidability
Interoperability

Maintainability (e.g. Mean Time To Repair - MTTR)
Management

Modifiability

https://en.wikipedia.org/wiki/Non-functional_requirement

Network topology
o Open source

Operability

Performance / response time (performance engineering)

Platform compatibility
Price

Privacy (compliance to privacy laws)

Portability

Quality (e.g. faults discovered, faults delivered, fault removal efficacy)
Readability

Reliability (e.g. Mean Time Between/To Failures - MTBF/MTTF)
Reporting

Resilience

Resource constraints (processor speed, memory, disk space, network bandwidth, etc.)

Response time
Reusability
Robustness

Safety or Factor of safety
Scalability (horizontal, vertical)

Security (cyber and physical)

o Software, tools, standards etc. Compatibility
o Stability

Supportability

Testability

Throughput

Transparency

Usability (Human Factors) by target user community

When not met
is the
system not “Non-Functional”?

“Non”-Functional Requirements
Are
Unspoken / Incomplete
Functional Requirements

Performance

At best, an afterthought!

It* isn’t an Issue

Until it (suddenly) is

* - Performance/Quality/Security....

And then...

It is often too late

In the age of cloud...

Just throw machines at it

Universal Scalability Law
20

14 /

N

/

Speedup

AN
ANy

T T T T T T T T T 1

1 2 4 8 16 32 64 128 256 512 1024
Processors

O N A 00

==Amdahl ==USL

That Real Quote on

“Premature Optimization” and the root of
all evil

Computer Programming as an Art (1974) |edit]
1974 Turing Award Lecture&, Communications of the ACM 17 (12), (December 1974), pp. 667—673

¢ The real problem is that programmers have spent far too much time worrying about efficiency in
the wrong places and at the wrong times; premature optimization is the root of all evil (or at
least most of it) in programming.
e p. 671
e Programmers waste enormous amounts of time thinking about, or worrying about, the speed of
noncritical parts of their programs, and these attempts at efficiency actually have a strong
negative impact when debugging and maintenance are considered. We should forget about
small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet
we should not pass up our opportunities in that critical 3%.
e Variant in Knuth, "Structured Programming with Goto Statements"z. Computing Surveys
6:4 (December 1974), pp. 261-301, §1.
¢ Knuth refers to this as "Hoare's Dictum" 15 years later in "The Errors of Tex", Software—
Practice & Experience 19:7 (July 1989), pp. 607-685. However, the attribution to C. A. R.
Hoare is doubtful.[1]&
¢ All three of these papers are reprinted in Knuth, Literate Programming, 1992, Center for the
Study of Language and Information ISBN 0937073806

https.//en.wikiquote.org/wiki/Donald Knuth

Computer Programming as an Art (1974) |edit]

1974 Turing Award Lecture&, Communications of the ACM 17 (12), (December 1974), pp. 667—673

¢ The real problem is that programmers have spent far too much time worrying about efficiency in
th@vrong places and at the wrong timeQ premature optimization is the root of all evil (or at
least most of it) in programming.
ep. 671
fio Programmers waste enormous amounts of time thinking about, or worrying about, the speed of

(noncritical parts of their programs}nd these attempts at efficiency actually have a strong
negative impact when debugging and maintenance are considered. We should forget about
small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet

___We should not pass up our opportunities in that critical 3%. 4 J

e Variant in Knuth, "Structured Programming with Goto Statements"z. Computing Surveys
6:4 (December 1974), pp. 261-301, §1.
¢ Knuth refers to this as "Hoare's Dictum" 15 years later in "The Errors of Tex", Software—
Practice & Experience 19:7 (July 1989), pp. 607-685. However, the attribution to C. A. R.
Hoare is doubtful.[1]&

¢ All three of these papers are reprinted in Knuth, Literate Programming, 1992, Center for the
Study of Language and Information ISBN 0937073806

https.//en.wikiquote.org/wiki/Donald Knuth

Pareto Principle

80/20 Rule

httos://en.wikipedia.org/wiki/Pareto_principle

Let Data Guide “Where”

“But it doesn’t have to be fast!!!”

“But it doesn’t have to be fast!!!”

Doesn’t have to be SLOW either!

“But it doesn’t have to be fast!!!”
“But it doesn’t have to be secure!!l!”
“But it doesn’t have to 11>

“But it doesn’t have to WORK!!1??2*

We seem to assume
speed/security/quality/eftc.

Is a “special” characteristic added... later

“But it doesn’t have to be *I111”

“...It's not my fault!”

* - Fast/Work/Secure...

Other Engineering Disciplines

Top speed of Sedan vs. F1

2Xx? 3x? 10x7?

Do our systems do
100M, 30M, 3K, or 300 tps?

Why are things inefficient?

Not Enough Time?
Too “Lazy”?
Gap(s) in Knowledge?
Too Much Complexity?

End Result

Bad
Design
Choices

Design

Performance
Quality
Security

Start with Design

Everyday Efficiencies

Be Lazy
Don’t reward bad ideas
Don’t be Naive

Good Engineering is Laziness

Too lazy to do something complicated
Never too lazy to stop making it better

Don’t reward bad ideas

Don’t let bad ideas stay around
Don’t be afraid to move on
Don’t be afraid to try something new

Absolutes are for the naive

Always use X!
Never use Y!

Better: Favor X over Y

Concrete Suggestions

Ownership, Dependency, & Coupling
Complexity Kills
Layers of Abstraction are not free

Manage Your Resources

Understand Your Tools
(OS, language, CPU, disk, libs, etc.)

The Compiler is BETTER than you

Idioms Matter

Abstract Later

Design for Composition

Counted vs. Uncounted Loops
Predictable Branches
Simple Conditionals
Stack Allocation
Favor Arrays over Lists
Primitive Data Structures

Everyday Efficiencies

Be Lazy
Don’t reward bad ideas
Don’t be Naive
All starts with Design

Questions?
StoneTor

Twitter: @toddimontgomery

Thank You!

