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ML in Uber Eats



Agenda

e (oals & Challenges

e ML Platform @ Uber




Our Scale

~ 8B
> 500 Cities > 220,000 Gross Bookings
Restaurant Partners tor 2018



Make eating well effortless, every
day, for everyone.




Goals & Challenges

Reliable

Predicting the Future

Affordable

Effortless

Network Efficiency

Food Discovery
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ML Platform @ Uber
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Model Accuracy Report
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PERFORMANCE MODEL VIS FEATURES

Test Data Performance

0.288

0.7936

0.4907

Precision-Recall ROC Confusion Matrix
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The reliability diagram shows how reliable (or "well-calibrated”)
the model's probability estimates are when evaluated on the
test data. For example, A well calibrated (binatry) model should
[ . classify the samples such that among the samples to which it
gives a probability close to 0.8 of belonging to the positive
class, approximately 80% of those samples actually belong to
pe the positive class.
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How Time Predictions Power
Dispatch System



Agenda

e Overview of Dispatch System
e Evolution via Time Predictions
o Dispatch System w/o Time Predictions

o Dispatch System w/ Time Predictions




Make Demand-Supply Matching Decisions

Challenges

e Solve an NP-Hard problem with a large problem space within seconds
e Improve efficiency without compromising delivery quality
e FEater & Restaurant & Delivery Partner



Eater & Restaurant & Delivery Partner

Eater Restaurant Partner Delivery Partner
® Fast drop-off ® Short wait time ® Short wait time
® Low delivery fee e Low Unfulfillment e Smart route planning

24/7 e Quick hand-off



Matching Algorithm: \.
An Augmented Vehicle Routing Problem (VRP)

Input(P lans(Supplies, Jobs, Constraints)) => max Y, DOF (p) => optimal plans

p Eplans
DOF : dispatch objective function
Supply : A courier eligible for job assignments
Job : A ordered list of waypoints (pickup, dropoff)
Plan : a combination of a supply and job(s)



Dispatch System w/o Time
Predictions



When to Dispatch?

Order 1st Scheduled
Created dispatch plc?k-up
attempt time
8:30 8:53 9:00
|
Fixed 7 mins ><>
;
-
do not dispatch a dispatch a

delivery-partner delivery-partner
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independently without
considering other jobs

e Jobs dispatched



Before...

e Where is my food?

eater

e How much longer do | have to wait? e [oodis cold

marketplace

delivery-partner restaurant-partner



Dispatch System w/ Time
Predictions



When to Dispatch?

Order 1st _nth Predicted
created dispatch dispatch pick-up
attempt attempt time
8:30 8:50 8:56 9:00
|
ETA

do not dispatch a driver

dispatch a driver
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are considered at the

e Alljobs and supplies
same time.

How to Dispatch? (Global)



e Then we solve the
entire set of jobs and
supplies as a single
global optimization
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After...

e [ast delivery times
e Accurate ETD estimations
e [rack food location

e Prevent delivery partners from waiting around
e Prevent food waiting for delivery partners
e Track delivery partner’s location

e Reduce waiting at restaurants
e Maximize earning potential
e Be aware of estimated travel time

oy
: marketplace L
ol < S
delivery e Dispatch delivery partners at the right time  réstaurant
partner

e Maintain supply/demand, prevent surge



Deep Dive in Time Predictions



Agenda

¢ Food Preparation Time Prediction
¢ Delivery Time Estimation
¢ Travel Time Estimation




Food Preparation Time Prediction



Why is Predicting Food Prep-time Difficult”

e 1) True restaurant prep-time is unknown!
o Example: We need to infer true prep-time in a retrospective manner based on restaurants and
delivery partners’ signals.

e 2) Prediction with limited signals
o Example: The busyness in the actual restaurant is unknown



How Did We Use ML to Solve the Problem?

e [eature engineering

e ML Model

e [eedback Loop



Feature Engineering

e Historical features
o  Avg prep-time for 1 week, ...

e Real-time (Contextual) features
o Time of day, day of week, order size, location, ...

e Near real-time features
o  Avg prep-time for last 10 mins, ...
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Recommended Appetizers Vermicelli Noodl
Recommended

Pho Tai Mem Soup

Rice noodle with filet mignon rare, d

$12.50 /
Goi Cuon (2 pcs) m e
Shrimp, pork, and vegetable rolled in b

rice paper (your choice of shrimp, shri... t

$6.10 —

Pho Tai Soup

Rice noodle with medium rare beef.

$11.00

Pho Tai Bo Vien Soup

Rice noodle with medium rare beef and beef balls.




Sensor Signals

dispatched arrived at restaurant

enroute to eater

arrived at eater

completed
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Conditional Random Field Model
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Feature Engineering (Cont’d) - Data Pipeline

GET DATA TRAIN MODELS EVAL MODELS DEPLOY, PREDICT & MONITOR

Time of day, I I
day of week,

Order SlZG, ‘ Cassandra
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0 Spark / <
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Bluetooth Data

OFFLINE

Data preparation pipelines push data into the Feature Store tables and training data repositories.



ML Model

e Model: Gradient boosting decision trees (XGBoost)
e Historical features

e Realtime (Contextual)s features

e Near real-time features



Hyperparameter tuning
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Image source: www.nature.com/articles/nature14541



http://www.nature.com/articles/nature14541

Model Training
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Model training jobs use Feature Store and training data repository data sets to train models and then push them to the model repository.




Model Training (Cont’d) - Model Deployment
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Model Training (Cont’d) - Make Predictions
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ML Model with Feedback Loop

Historical features
E.g. average prep-time in last
week

Near real time features
E.g. average prep-time in last
few minutes

Real time features
E.g. order size, time of day

___________________________

' Production model

Predicted

prep-time

model training

—_— 1

(GBDT)
Michelangelo
| 1

Updated Data

Online prediction

Offline training



Future Improvements

e Ground truth exploration
o Experiment in restaurants
O
e |mproving ML model
o Feature engineering
m Exploration of places, weather, and event data
m  Model partitioning
|
o Leverage ensemble learning (stacking)
o  Collaboration with Al Lalbs on more deep learning models



Delivery Time Estimation



Eater-facing ETD

restaurant-leg delivery-leg
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Why is predicting ETD difficult”?

restaurant-leg delivery-leg
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Travel Time Estimation



Rider

Rider - Request Ride

[XYYY) 7:56 AM
<_
260 Drumes St
Economy
$3.33 $7.89
8:12am 8:05am ®
B eeee 4321

REQUEST UBERX

]

AN

FRANCISCO

Rider - On Trip

RATINGS ACCOUNT

Driver

o

7:56 AM

Arrival

8:05am

David 4.8%

5JFDKLA
Honda Civic




Credits

Teams @ Uber

Special thanks to:

Engineers

Data Scientists
Product managers
Product Ops

Data Analysts



THANK YOU




Uber
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or in any way disclose this document or any of the enclosed information to any person other than employees of addressee to the extent

necessary for consultations with authorized personnel of Uber.



