Index-Free Log Analytics
with Kafka

Kresten Krab Thorup, Humio CTO

Log Everything,
Answer Anything,
In Real-Time.

Log Analytics Wish List

e Record everything - TB’s of data per day

e Interactive/ad-hoc search on historic data- 100’s of TB

e Generate metrics and alerts from the logs in real-time

e Can be installed on-premises (privacy / security)

e Affordable - TCO (hardware, license, operations)

Data Driven SecOps

Alerts/dashboards

= =
Y e

Incident Response

30k PC’s

6 AD’s

2k servers

20TB/day

BRO network

Put Logs in an Index?

Index-Free

Index-Free

High Volume

N Y XY
N XYY
RN LR N
ettt
N LN

Index-Free

N Y N
Qe
Qe
LN Y N
LN Y N

«X3ANI,; JNIL

Index-Free

ALERTS & DASHBOARD

Index-Free

AR
AR
AR
AR
AR

Stream
Query
Stream
Query
: Ad-Hoc
Queries
Stream

Query

Jerror/i | count() -
Query

I State Machine e

= count: 473

count: 243,565

Log Store Design

® Build minimal index and compress data
Store order of magnitude more events

® Fast “grep” for filtering events

Filtering and time/metadata selection
reduces the problem space

Event Store

10GB
10GB
10GB

10GB

(start-time, end-time, metadata)
(start-time, end-time, metadata)

(start-time, end-time, metadata)

(start-time, end-time, metadata)

Eve nt StO re 1 month x 1TB/day ingest

4TB data, <1MB index

1GB (start-time, end-time, metadata) 40MB
1GB (start-time, end-time, metadata) 40MB
1GB (start-time, end-time, metadata) 40MB

1GB (start-time, end-time, metadata) 40MB

Bloom Filters +4% overhead

Query

datasource
#dcil, #web 1GB
#dcl, #app
#dc2, #web

1GB 1GB

time

Query 10GB

datasource /
|

#dcl #web | 1GB | 16B 1GB | 1GB | 1GB
#dcl, #app |98 1GB % 1ce 1GB

#dc2, #web 1GB 1GB

time

#IndexFreelLogging

Real-time Processing s Brute-Force Search

e “Materialized views”
for dashboards/alerts.

e Processed when data
IS in-memory anyway.

e Fast response times
for “known” queries.

e Shift CPU load to
query time

e Data compression
e Filtering, not Indexing

e Requires “Full stack”
ownership to perform

Humio Ingest Data Flow

alerts /| dashboards

API/ :
Agent Ifl> Ingest Ifl> Digest Ifl> Storage

* Send data *HTTP/TCP API * Live queries * Replication
* Authenticate * Write segment files
* Field Extraction

Use Kafka for the ‘hard parts’

» Coordination
» Commit-log / ingest buffer

* No KSQL

Kafka 101

- Kafka is a reliable distributed log/queue system

- A Kafka queue consists of a number of partitions
- Messages within a partition are sequenced

- Partitions are replicated for durability

- Use ‘partition consumers’ to parallelise work

Kafka 101 topic

partition #1
consumer
producer
partition=hash(key)
partition #2
consumer
partition #3

Coordination ‘global data’

- Zookeeper-like system in-process

- All cluster node keep entire K/V set in memory

- Make decisions locally/fast without crossing a
network boundary.

- Allows in-memory indexes of meta data.

Coordination ‘global data’

- Coordinated via single-partition Kafka queue
- Ops-based CRDT-style event sourcing

- Bootstrap from snapshot from any node

- Kafka config: low latency

Durability

- Don’t loose people’s data.
- Control and manage data life expectancy
- Store, Replicate, Archive, Multi-tier Data storage

Durability Kafka

Agent Ifl> Ingest ’ Digest Ifl> Storage

* Send data * Authenticate e Streaming queries * Replication
* Field Extraction » Write segment files * Queries on ‘old data’

Durability

o 2 2 R
Ingest

HTTP 200 response => Kafka ACK’ed the store

File records last consumed
sequence number from disk

Durability

Digest

WIP
S t
Kafka Ifl> QE Ifl> (buffen) egmen

Retention must be long enough to deal with crash

Durability

Digest
WIP
s [=

ingest latency

4 >
p50 P99

ingest latency (live tail) seconds: mean and 95th percentile

2s

1s

0.4s

0.2s

0.1s

20:00

Last 24h (Live)

16:00

Kafka partition load distribution p... Last5m (Live)

10 12 14 16 18 20 22

10

7.5

v

2.

v

o

Hash? topic

partition #1

consumer

producer
?
partition=hash(key)

partition #2

consumer
partition #3

Consumers falling behind...

- Reasons:
- Data volume
- Processing time for real-time processing
- Measure ingest
* Increase paralle

- Log scale ("

atency
iIsm when running 10s behind
, 2,4, ...) randomness added to key.

Data Sources

_ _ topic
multiplexing partition #1
R
R .
partition #2
. = = 100.000 \ partition #3 === 100.000

| f | f

Data Model

- * *
Repository Data Source Event
» Storage limits * Time series identified by e Timestamp +
e User admin set of key-value ‘tags’ Map[String,String]

Hash (#type=accesslog,#host=0ps0l)

High variability tags ‘auto grouping’

- Tags (hash key) may be chosen with large value domain
- User name
- IP-address

- This causes many datasources => growth in metadata,
resource Iissues.

High variability tags ‘auto grouping’

- Tags (hash key) may be chosen with large value domain
- User name
- IP-address

- Humio sees this and hashes tag value into a smaller

value domain before the Kafka partition hash.

High variability tags ‘auto grouping’

- For example, before Kafka ingest hash(“kresten”)
#user=kresten => #user=13
- Store the actual value ‘kresten’ in the event

- At query time, a search is then rewritten to search the
data source #user=13, and re-filter based on values.

Multiplexing in Kafka

- [deally, we would just have 100.000 dynamic topics that
perform well and scales infinitely.

- In practice, you have to know your data, and control the
sharding. Default Kafka configs work for many
workloads, but for maximum utilisation you have to do

go beyond defaults.
- Humio automates this problem for log data w/ tags.

Using Kafka in an on-prem Product

- Leverage the stability and fault tolerance of Kafka
- Large customers often have Kafka knowledge
- We provide kafka/zookeeper docker images
- Only real issue is Zookeper dependency
- Often runs out of disk space in small setups

Other Issues

- Observed GC pauses in the JVM
- Kafka and HTTP libraries compress data
- JNI/GC interactions with byte[] can block global GC.
- We replaced both with custom compression
- JLibGzip (gzip in pure Java)
- Zstd and LZ4/JNI using DirectByteBuffer

Resetting Kafka/Zookeeper

- Kafka provides a ‘cluster id’ we can use as epoch
- All Kafka sequence numbers (offsets) are reset
 Recognise this situation, no replay beyond such a reset.

What about KSQL?

- Kafka now has KSQL which is in many ways similar to
the engine we built
- Humio moves computation to the data,
- KSQL moves the data to the computation
- We provide interactive end-user friendly experience

Final thoughts

- With #IndexFreelLogging you can eat your cake and
have it too: fast, useful, low footprint logging.

- Many difficult problems go away by deferring them to
Kafka.

Thanks for your time.

Kresten Krab Thorup
Humio CTO

o

Filter 1GB data

Search \

Read from disk I

| 0s l1s

Filter 1GB data

(Load compressed Search -\

I Decompress I

| | | R

[0s 10.7s [1s

Filter 1GB data

r Load compressed

l \ Decompress

Search

I I I S
| 0s 10.2255 [1s

Filter 1GB data

r Load compressed

AN

I
I Decompress & Search
I

I
I
| I ' >
| 0s 10.1265s l1s

Filter 1GB data

TN

I
I Decompress & Search
I

| I ' >

| 0s 10.0265s [1s

