
Datadog: A Real-Time Metrics
Database for Trillions of
Points/Day

Ian NOWLAND (https://twitter.com/inowland)
VP, Metrics and Monitors

Joel BARCIAUSKAS (https://twitter.com/JoelBarciauskas)
Director, Aggregation Metrics

QCon NYC ‘19

Some of Our Customers

2

Some of What We Store

3

Changing Source Lifecycle

4

Months/years Seconds

Datacenter Cloud/VM Containers

Changing Data Volume

5
100’s

10,000’s

System

Application

Per User Device

SLIs

Applying Performance Mantras

• Don't do it
• Do it, but don't do it again
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

*From Craig Hanson and Pat Crain, and the performance engineering
community - see http://www.brendangregg.com/methodology.html

6

http://www.brendangregg.com/methodology.html

Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture

7

Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture

8

Example Metrics Query 1

“What is the system load on instance i-xyz across the last 30 minutes”

9

A Time Series

metric system.load.1

timestamp 1526382440

value 0.92

tags host:i-xyz,env:dev,...

10

Example Metrics Query 2

“Alert when the system load, averaged across our fleet in us-east-1a for a 5
minute interval, goes above 90%”

11

Example Metrics Query 2

“Alert when the system load, averaged across my fleet in us-east-1a for a 5
minute interval, goes above 90%”

12

Aggregate DimensionTake Action

Metrics Name and Tags

Name: single string defining what you are measuring, e.g.

system.cpu.user

aws.elb.latency

dd.frontend.internal.ajax.queue.length.total

Tags: list of k:v strings, used to qualify metric and add dimensions to filter/aggregate over, e.g.

['host:server-1', 'availability-zone:us-east-1a', 'kernel_version:4.4.0']

['host:server-2', 'availability-zone:us-east-1a', 'kernel_version:2.6.32']

['host:server-3', 'availability-zone:us-east-1b', 'kernel_version:2.6.32']

13

Tags for all the dimensions

Host / container: system metrics by host

Application: internal cache hit rates, timers by module

Service: hits, latencies or errors/s by path and/or response code

Business: # of orders processed, $'s per second by customer ID

14

Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture

15

Pipeline Architecture

16

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Performance mantras

• Don't do it
• Do it, but don't do it again
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

17

Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

18

Pipeline Architecture

19

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Pipeline Architecture

20

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Metrics Store Characteristics

• Most metrics report with a tag set for quite some time

=> Therefore separate tag stores from time series stores

21

Pipeline Architecture

22

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Kafka for Independent Storage Systems

IntakeIncoming
Data

Kafka Points

Store 1

Store 2

Kafka
Tag Sets

Tag Index

Tag
Describer S3

S3 Writer Query
System

Outgoing
Data

Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

24

Kafka for Independent Storage Systems

IntakeIncoming
Data

Kafka Points

Store 1

Store 2

Kafka
Tag Sets

Tag Index

Tag
Describer S3

S3 Writer Query
System

Outgoing
Data

Scaling through Kafka
Data is separated by partition to distribute it

Partitions are customers, or a mod hash of their metric name

This also gives us isolation.

Intake
Kafka partition:1Incoming

Data Kafka partition:2

Kafka partition:0

Store 1

Kafka partition:3

Store 2

Store 2

Store 2

Store 1

Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data

stores
• Do it cheaper

27

Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture

28

Per Customer Volume Ballparking

29

104 Number of apps; 1,000’s hosts times 10’s containers

103 Number of metrics emitted from each app/container

100 1 point a second per metric

105 Seconds in a day (actually 86,400)

101 Bytes/point (8 byte float, amortized tags)

= 1013 10 Terabytes a Day For One Average Customer

Volume Math

• $210 to store 10 TB in S3 for a month
• $60,000 for a month rolling queryable (300 TB)
• But S3 is not for real time, high throughput queries

30

Cloud Storage Characteristics

31

Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only

Volume Math

• 80 x1e.32xlarge DRAM for a month
• $300,000 to store for a month
• This is with no indexes or overhead
• And people want to query much more than a month.

32

Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper

33

Returning to an Example Query

“Alert when the system load, averaged across our fleet in us-east-1a for a 5
minute interval, goes above 90%”

34

Queries We Need to Support

35

DESCRIBE TAGS What tags are queryable for this metric?

TAG INDEX Given a time series id, what tags were used?

TAG INVERTED
INDEX

Given some tags and a time range, what were
the time series ingested?

POINT STORE What are the values of a time series between
two times?

Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper

36

Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies

37

Cloud Storage Characteristics

38

Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only

Cloud Storage Characteristics

39

Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only

Hybrid Data Storage Types

40

System

DESCRIBE TAGS

TAG INDEX

TAG INVERTED INDEX

POINT STORE

QUERY RESULTS

Hybrid Data Storage Types

41

System Type Persistence

DESCRIBE TAGS Local SSD Years

TAG INDEX DRAM Cache (Hours)

Local SSD Years

TAG INVERTED INDEX DRAM Hours

On SSD Days

S3 Years

POINT STORE DRAM Hours

Local SSD Days

S3 Years

QUERY RESULTS DRAM Cache (Days)

Hybrid Data Storage Technologies

42

System Type Persistence Technology Why?

DESCRIBE TAGS Local SSD Years LevelDB High performing single node k,v

TAG INDEX DRAM Cache (Hours) Redis Very high performance, in memory k,v

Local SSD Years Cassandra Horizontal scaling, persistent k,v

TAG INVERTED INDEX DRAM Hours In house Very customized index data structures

On SSD Days RocksDB + SQLite Rich and flexible queries

S3 Years Parquet Flexible Schema over time

POINT STORE DRAM Hours In house Very customized index data structures

Local SSD Days In house Very customized index data structures

S3 Years Parquet Flexible Schema over time

QUERY RESULTS DRAM Cache (Days) Redis Very high performance, in memory k,v

Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture

43

Alerts/Monitors Synchronization

• Level sensitive
• False positives is almost as important as false negative

• Small delay preferable to evaluating incomplete data
• Synchronization need is to be sure evaluation bucket is filled

before processing

44

Pipeline Architecture

45

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Inject
heartbeat here

Pipeline Architecture

46

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Inject
heartbeat here

And test it gets to
here

Heartbeats for Synchronization

Semantics:

- 1 second tick time for metrics
- Last write wins to handle agent concurrency

- Inject fake data as heartbeat through pipeline

Then:
- Monitor evaluator ensure heartbeat gets through before evaluating next period

Challenges:
- With sharding and multiple stores, lots of independent paths to make sure

heartbeats go through

47

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies

48

Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture

49

Types of metrics

50

Counter, aggregate by sum Gauges, aggregate by last or avg

Ex: Requests, errors/s, total
time spent (stopwatch)

Ex: CPU/network/disk use,
queue length

Aggregation

51

{0, 1, 0, 1, 0, 1, 0, 1, 0, 1}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

{5, 5, 5, 5, 5, 5, 5, 5, 5, 5}

{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

Time

S
p
ac
e

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Query output

Counters: {5, 40, 50, 1023}

Gauges (average): {0.5, 4, 5, 102.3}

Gauges (last): {1, 9, 5, 512}

Query characteristics

52

User:

• Bursty and unpredictable
• Latency Sensitive - ideal end user response is 100ms, 1s at most.
• Skews to recent data, but want same latency on old data

Query characteristics

53

Dashboards:

• Predictable
• Important enough to save
• Looking for step-function changes, e.g. performance regressions,

changes in usage

Focus on outputs

54

These graphs are both aggregating 70k series

Not a lot, but still output 10x to 2000x less than input!

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking?
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies

55

Pipeline Architecture

56

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Aggregation
Points

Pipeline Architecture

57

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Aggregation
Points

Streaming
Aggregator

Pipeline Architecture

58

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Aggregation
Points

No one's looking here!

Streaming
Aggregator

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies

59

Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture

60

Distributions

61

Aggregate by percentile or SLO
(count of values above or below a threshold)

Ex: Latency, request size

Calculating distributions

62

{0, 1, 0, 1, 0, 1, 0, 1, 0, 1}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

{5, 5, 5, 5, 5, 5, 5, 5, 5, 5}

{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

Time

S
p
ac
e

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

{0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 8,
8, 9, 16, 32, 64, 128, 256,
512}

p90

p50

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper again?

63

What are "sketches"?

64

Data structures designed for operating on streams of data

• Examine each item a limited number of times (ideally once)
• Limited memory usage (logarithmic to the size of the stream,

or fixed)

Max size

Examples of sketches

HyperLogLog

• Cardinality / unique count estimation
• Used in Redis PFADD, PFCOUNT, PFMERGE

Others: Bloom filters (also for set membership), frequency
sketches (top-N lists)

65

Tradeoffs

Understand the tradeoffs - speed, accuracy, space

What other characteristics do you need?

• Well-defined or arbitrary range of inputs?
• What kinds of queries are you answering?

66

Approximation for distribution metrics

What's important for approximating distribution metrics?

• Bounded error
• Performance - size, speed of inserts
• Aggregation (aka "merging")

67

How do you compress a distribution

68

Histograms

Basic example from OpenMetrics / Prometheus

69

Histograms

Basic example from OpenMetrics / Prometheus

70

Time spent Count

<= 0.05 (50ms) 24054

<= 0.1 (100ms) 33444

<= 0.2 (200ms) 100392

<= 0.5 (500ms) 129389

<= 1s 133988

> 1s 144320

median = ~158ms (using linear interpolation)

72160

158ms

p99 = ?!

Rank and relative error

71

Rank and relative error

72

Relative error

In metrics, specifically latency metrics, we care about about both
the distribution of data as well as specific values

E.g., for an SLO, I want to know, is my p99 500ms or less?

Relative error bounds mean we can answer this: Yes, within 99%
of requests are <= 500ms +/- 1%

Otherwise stated: 99% of requests are guaranteed <= 505ms

73

Fast insertion

Each insertion is just two operations - find the bucket, increase
the count (sometimes there's an allocation)

74

Fixed Size - how?

With certain distributions, we may reach the maximum number
of buckets (in our case, 4000)

• Roll up lower buckets - lower percentiles are generally not as
interesting!*

*Note that we've yet to find a data set that actually needs this in practice
75

Aggregation and merging

76

"a binary operation is commutative if changing the order of the
operands does not change the result"

Why is this important?

Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture

77

Before, during, save for later

If we have two-way mergeable sketches, we can re-aggregate
the aggregations

• Agent
• Streaming during ingestion
• At query time
• In the data store (saving partial results)

78

Pipeline Architecture

79

Customer
Browser

IntakeMetrics sources

Query
System

Web frontend &
APIs

Customer

Monitors and
Alerts

Slack/Email/
PagerDuty etc

Data Stores
Data Stores

Data Stores

Query
Cache

Aggregation
Points

Streaming
Aggregator

DDSketch

DDSketch (Distributed Distribution Sketch) is open source (part
of the agent today)

• Presenting at VLDB2019 in August
• Open-sourcing standalone versions in several languages

80

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies

81

Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies, and

use compression techniques based on what customers really need

82

Summary

• Don't do it - build the bare minimal synchronization needed
• Do it, but don't do it again - use query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate where is cost effective
• Do it concurrently - use independent horizontally scaleable data stores
• Do it cheaper - use hybrid data storage types and technologies, and

use compression techniques based on what customers really need

83

Thank You

Challenges and opportunities of
aggregation

• Challenges:
• Accuracy
• Latency

• Opportunity:
• Orders of magnitude performance improvement on common and

highly visible queries

85

Human factors and dashboards

86

• Human-latency sensitive - high visibility

Late-arriving data makes people nervous

• Human granularity - how many lines can you reason about on a
dashboard?

Oh no...

Where aggregation happens

87

At the metric source (agent/lambda/etc)

• Counts by sum
• Gauges by last

At query time

• Arbitrary user selection (avg/sum/min/max)
• Impacts user experience

Adding a new metric type

Counters, gauges, distributions!

Used gauges for latency, etc, but aggregate by last is not what
you want

Need to update the agent, libraries, integrations

We're learning and building on what we have today

88

Building blocks

We have a way to move data around (Kafka)

We have ways to index that data (tagsets)

We know how to separate recent and historical data

Plan for the future

[Lego / puzzle with gaps]

89

Connect the dots

90

