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Changing Source Lifecycle

Datacenter Cloud/VM Containers

Months/years



Changing Data Volume
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Applying Performance Mantras

e Don'tdoit

e Do it, but don't do it again

e Doitless

e Do it later

e Do it when they're not looking
e Do it concurrently

e Do it cheaper

*From Craig Hanson and Pat Crain, and the performance engineering
community - see http://www.brendangreqg.com/methodology.html
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Example Metrics Query 1

“What is the system load on instance i-xyz across the last 30 minutes”



A Time Series
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Example Metrics Query 2

“Alert when the system load, averaged across our fleet in us-east-1a fora 5
minute interval, goes above 90%”



Example Metrics Query 2

@ hen the system load, @averaged across my fleebin for abd

te interval, goes above 90%

Take Action Aggregate Dimension



Metrics Name and Tags

Name: single string defining what you are measuring, e.g.
system.cpu.user
aws.elb.latency
dd.frontend.internal.ajax.queue.length.total
Tags: list of k:v strings, used to qualify metric and add dimensions to filter/aggregate over, e.g.
['host:server-1', 'availability-zone:us-east-1a', 'kernel_version:4.4.0']
['host:server-2', 'availability-zone:us-east-1a’, 'kernel_version:2.6.32']

['host:server-3', 'availability-zone:us-east-1b’, 'kernel_version:2.6.32']



Tags for all the dimensions

Application: internal cache hit rates, timers by module

Host / container: system metrics by host

Service: hits, latencies or errors/s by path and/or response code

Business: # of orders processed, $'s per second by customer ID
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Performance mantras
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e Doitless

e Do it later

e Do it when they're not looking
e Do it concurrently

e Do it cheaper
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Metrics Store Characteristics

¢ Most metrics report with a tag set for quite some time

=> Therefore separate tag stores from time series stores
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Performance mantras

e Don'tdoit

e Do it, but don't do it again - query caching

e Doitless

e Do it later - minimize processing on path to persistence
e Do it when they're not looking

e Do it concurrently

e Do it cheaper



Kafka for Independent Storage Systems
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Scaling through Kafka

Data is separated by partition to distribute it
Partitions are customers, or a mod hash of their metric name

This also gives us isolation. store 1 W Store 2

Kafka partition:0
Kafka partition:1

Incoming

Data Intake —
‘ Kafka partition:2 I
K

afka partition:3

Store 2



Performance mantras

e Don'tdoit

e Do it, but don't do it again - query caching

e Doitless

e Do it later - minimize processing on path to persistence

e Do it when they're not looking

e Do it concurrently - use independent horizontally scalable data
stores

e Do it cheaper
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Per Customer Volume Ballparking

10
10°
10°
10°
10

— 1013

Number of apps; 1,000’s hosts times 10’s containers
Number of metrics emitted from each app/container
1 point a second per metric

Seconds in a day (actually 86,400)

Bytes/point (8 byte float, amortized tags)

10 Terabytes a Day For One Average Customer



Volume Math

e $210 to store 10 TB in S3 for a month
e $60,000 for a month rolling queryable (300 TB)
e But S3 is not for real time, high throughput queries



Cloud Storage Characteristics

Type
DRAM'
SSD?
EBS io1
S3

Glacier

prON~

Max Capacity
4TB

60 TB

432 TB

Infinite

Infinite

Bandwidth
80 GB/s
12 GB/s
12 GB/s
12 GB/s®

12 GB/s?®

Latency
0.08 us
1us

40 us
100+ ms

hours

X1e.32xlarge, 3 year non convertible, no upfront reserved instance
i3en.24xlarge, 3 year non convertible, no upfront reserved instance
Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
Storage Cost only

Cost/TB for 1 month
$1,000

$60

$400

$214

$4¢

Volatility

Instance Reboot
Instance Failures
Data Center Failures
11 nines durability

11 nines durability



Volume Math

e 80 x1e.32xlarge DRAM for a month

e $300,000 to store for a month

e This is with no indexes or overhead

* And people want to query much more than a month.



Performance mantras

e Don'tdo it

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize processing on path to persistence

e Do it when they're not looking

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper



Returning to an Example Query

“Alert when the system load, averaged across our fleet in us-east-1a fora 5
minute interval, goes above 90%”



Queries We Need to Support

DESCRIBE TAGS What tags are queryable for this metric?
TAG INDEX Given a time series id, what tags were used?

TAG INVERTED Given some tags and a time range, what were
INDEX the time series ingested?

POINT STORE What are the values of a time series between
two times?

%
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e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize processing on path to persistence
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e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper
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Cloud Storage Characteristics

Type
DRAM'
SSD?
EBS io1
S3

Glacier

prON~

Max Capacity
4TB

60 TB

432 TB

Infinite

Infinite

Bandwidth | Latency Cost/TB for 1 month
80 GB/s 0.08 us $1,000

12 GB/s 1 us $60

12 GB/s 40 us $400

12 GB/s® 100+ ms $214

12 GB/s® hours $44

X1e.32xlarge, 3 year non convertible, no upfront reserved instance
i3en.24xlarge, 3 year non convertible, no upfront reserved instance
Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
Storage Cost only

Volatility

Instance Reboot
Instance Failures
Data Center Failures
11 nines durability

11 nines durability



Hybrid Data Storage Types

System
DESCRIBE TAGS

TAG INDEX

TAG INVERTED INDEX

POINT STORE

QUERY RESULTS



Hybrid Data Storage Types

System Type Persistence
DESCRIBE TAGS Local SSD Years
TAG INDEX DRAM Cache (Hours)

Local SSD Years

TAG INVERTED INDEX DRAM Hours
On SSD Days
S3 Years
POINT STORE DRAM Hours

Local SSD Days
S3 Years

QUERY RESULTS DRAM Cache (Days)



Hybrid Data Storage Technologies

System Type Persistence Technology Why?

DESCRIBE TAGS Local SSD Years LevelDB High performing single node k,v

TAG INDEX DRAM Cache (Hours) | Redis Very high performance, in memory k,v
Local SSD Years Cassandra Horizontal scaling, persistent k,v

TAG INVERTED INDEX DRAM Hours In house Very customized index data structures
On SSD Days RocksDB + SQLite Rich and flexible queries
S3 Years Parquet Flexible Schema over time

POINT STORE DRAM Hours In house Very customized index data structures
Local SSD Days In house Very customized index data structures
S3 Years Parquet Flexible Schema over time

QUERY RESULTS DRAM Cache (Days) Redis Very high performance, in memory k,v

E%
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Alerts/Monitors Synchronization

e | evel sensitive
e False positives is almost as important as false negative

e Small delay preferable to evaluating incomplete data
e Synchronization need is to be sure evaluation bucket is filled
before processing
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Heartbeats for Synchronization

Semantics:

- 1 second tick time for metrics
- Last write wins to handle agent concurrency

- Inject fake data as heartbeat through pipeline

Then:
- Monitor evaluator ensure heartbeat gets through before evaluating next period

Challenges:
- With sharding and multiple stores, lots of independent paths to make sure

heartbeats go through

@47



Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize processing on path to persistence

e Do it when they're not looking

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper - use hybrid data storage types and technologies
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Types of metrics

Counter, aggregate by sum Gauges, aggregate by last or avg

Ex: Requests, errors/s, total Ex: CPU/network/disk use,
time spent (stopwatch) queue length %



Aggregation

{0,1,0,1,0,1,0,1,0, 1}
{0,1,2,3,4,5,6, 7,8, 9}

(5,5,5,5,5,5,5,5, 5, 5)

{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

Time

A~ O

)

Query output
Counters: {5, 40, 50, 1023}
Gauges (average): {0.5, 4, 5, 102.3}

Gauges (last): {1, 9, 5, 512}

51



Query characteristics

User:

e Bursty and unpredictable
e | atency Sensitive - ideal end user response is 100ms, 1s at most.
e Skews to recent data, but want same latency on old data



Query characteristics

Dashboards:

e Predictable

¢ |mportant enough to save

e | ooking for step-function changes, e.g. performance regressions,
changes in usage

section:normalize

T T T
Mon 3 IFERPRINe 4 Wed 5




Focus on outputs

40K
3ok T

20K

10K

18:15 18:30 18:45 19:00

Showing | 3254 | series from w queries. Showing @J series from [l] queries.

These graphs are both aggregating 70k series
Not a lot, but still output 10x to 2000x less than input!



Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize processing on path to persistence

e Do it when they're not looking?

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper - use hybrid data storage types and technologies
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Pipeline Architecture

No one's looking here!
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Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize processing on path to persistence

e Do it when they're not looking - pre-aggregate

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper - use hybrid data storage types and technologies
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Distributions

p50 p75 p90 p95 p99

10.0k

5.0k

T T
0ns 2.00s 4.00s 6.00 s 8.00s

Aggregate by percentile or SLO
(count of values above or below a threshold)

Ex: Latency, request size



Calculating distributions

{0,1,0,1,0,1,0,1,0, 1}

{05 152! 3! 45 55 65 7, 8, 9} 15 1! 1!2! 25 35 4, 4, 5, 5, 5,
5,55,5,/5,5,5,5,6,7,8,
(5,5,5,5,5,5,5, 5, 5, 5} 8,9, 16,132, 64, 128, 256,
512} \
{0, 2, 4, 8, 16, 32, 64, 128, 256, 512} o0
p
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Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize processing on path to persistence

e Do it when they're not looking - pre-aggregate

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper again?



What are "sketches"?

Data structures designed for operating on streams of data

e Examine each item a limited number of times (ideally once)
e Limited memory usage (logarithmic to the size of the stream,
or fixed) -




Examples of sketches

HyperLoglog

e (Cardinality / unigue count estimation
e Used in Redis PFADD, PFCOUNT, PFMERGE

Others: Bloom filters (also for set membership), frequency
sketches (top-N lists)



Tradeoffs

Understand the tradeoffs - speed, accuracy, space
What other characteristics do you need?

e \Well-defined or arbitrary range of inputs?
e \What kinds of queries are you answering?



Approximation for distribution metrics

What's important for approximating distribution metrics?

e Bounded error
e Performance - size, speed of inserts
e Aggregation (aka "merging")



How do you compress a distribution
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Histograms

Basic example from OpenMetrics / Prometheus

# HELP http_request_duration_seconds A histogram of the request duration.
# TYPE http_request_duration_seconds histogram
http_request_duration_seconds_bucket{1le="0.05"} 24054
http_request_duration_seconds_bucket{le="0.1"} 33444
http_request_duration_seconds_bucket{le="0.2"} 100392
http_request_duration_seconds_bucket{le="0.5"} 129389
http_request_duration_seconds_bucket{le="1"} 133988
http_request_duration_seconds_bucket{le="+Inf"} 144320
http_request_duration_seconds_sum 53423
http_request_duration_seconds_count 144320

4



Histograms

Basic example from OpenMetrics / Prometheus

median = ~168ms (using linear interpolation)

Time spent Count
<=0.05 (50ms) | 24054
<= 0.1 (100ms) 33444

<= 0.2 (200ms) | 100392

<= 0.5 (500ms) 129389
<=1s 133988 100000 \
72160

>1s 144320

50000

0 =0
0.1 %3”150.3 04 05 06 07 08 09 1
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Rank and relative error

A

i

GK Pﬂ‘i\}

S\\"\"C\\ \mﬂq

fQ\m+'UL cAuww\%e‘gg




Relative error

In metrics, specifically latency metrics, we care about about both
the distribution of data as well as specific values

E.g., for an SLO, | want to know, is my p99 500ms or less?

Relative error bounds mean we can answer this: Yes, within 99%
of requests are <= 500ms +/- 1%

Otherwise stated: 99% of requests are guaranteed <= 505ms

%



Fast insertion

Each insertion is just two operations - find the bucket, increase
the count (sometimes there's an allocation)



Fixed Size - how?

With certain distributions, we may reach the maximum number
of buckets (in our case, 4000)

¢ Roll up lower buckets - lower percentiles are generally not as
interesting!”

*Note that we've yet to find a data set that actually needs this in practice %



Aggregation and merging

"a binary operation is commutative if changing the order of the
operands does not change the result”

Why is this important?
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Before, during, save for later

If we have two-way mergeable sketches, we can re-aggregate
the aggregations

e Agent

e Streaming during ingestion

e At query time

e |n the data store (saving partial results)
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DDSketch

DDSketch (Distributed Distribution Sketch) is open source (part
of the agent today)

e Presenting at VLDB2019 in August
e (Open-sourcing standalone versions in several languages



Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize processing on path to persistence

e Do it when they're not looking - pre-aggregate

e Do it concurrently - use independent horizontally scalable data stores
e Do it cheaper - use hybrid data storage types and technologies



Performance mantras

e Don't do it - build the minimal synchronization needed

e Do it, but don't do it again - query caching

e Do it less - only index what you need

e Do it later - minimize processing on path to persistence

e Do it when they're not looking - pre-aggregate

e Do it concurrently - use independent horizontally scalable data stores

e Do it cheaper - use hybrid data storage types and technologies, and
use compression techniques based on what customers really need

%



Summary

e Don't do it - build the bare minimal synchronization needed

e Do it, but don't do it again - use query caching

e Do itless - only index what you need

e Do it later - minimize processing on path to persistence

e Do it when they're not looking - pre-aggregate where is cost effective

e Do it concurrently - use independent horizontally scaleable data stores

e Do it cheaper - use hybrid data storage types and technologies, and
use compression techniques based on what customers really need

E%
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Challenges and opportunities of
aggregation

e Challenges:
e Accuracy
e |atency
e QOpportunity:
e Qrders of magnitude performance improvement on common and
highly visible queries



Human factors and dashboards

¢ Human-latency sensitive - high visibility
Late-arriving data makes people nervous

¢ Human granularity - how many lines can you reason about on a
dashboard?
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Where aggregation happens

At the metric source (agent/lambda/etc)

e Counts by sum
e Gauges by last

At query time

e Arbitrary user selection (avg/sum/min/max)
e |mpacts user experience



Adding a new metric type

Counters, gauges, distributions!

Used gauges for latency, etc, but aggregate by last is not what
you want

Need to update the agent, libraries, integrations

We're learning and building on what we have today



Building blocks

We have a way to move data around (Kafka)
We have ways to index that data (tagsets)
We know how to separate recent and historical data

Plan for the future

[Lego / puzzle with gaps]



Connect the dots




