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Some of Our Customers

2



Some of What We Store
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Changing Source Lifecycle
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Changing Data Volume

5
100’s

10,000’s

System

Application

Per User Device

SLIs



Applying Performance Mantras

• Don't do it
• Do it, but don't do it again
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

*From Craig Hanson and Pat Crain, and the performance engineering 
community  - see http://www.brendangregg.com/methodology.html 
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http://www.brendangregg.com/methodology.html


Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture
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Example Metrics Query 1

“What is the system load on instance i-xyz across the last 30 minutes”
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A Time Series

metric system.load.1

timestamp 1526382440

value 0.92

tags host:i-xyz,env:dev,...
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Example Metrics Query 2

“Alert when the system load, averaged across our fleet in us-east-1a for a 5 
minute interval, goes above 90%”
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Example Metrics Query 2

“Alert when the system load, averaged across my fleet in us-east-1a for a 5 
minute interval, goes above 90%”
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Aggregate DimensionTake Action



Metrics Name and Tags

Name: single string defining what you are measuring, e.g.

system.cpu.user

aws.elb.latency

dd.frontend.internal.ajax.queue.length.total

Tags: list of k:v strings, used to qualify metric and add dimensions to filter/aggregate over, e.g.

['host:server-1', 'availability-zone:us-east-1a', 'kernel_version:4.4.0']

['host:server-2', 'availability-zone:us-east-1a', 'kernel_version:2.6.32']

['host:server-3', 'availability-zone:us-east-1b', 'kernel_version:2.6.32']
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Tags for all the dimensions

Host / container: system metrics by host

Application: internal cache hit rates, timers by module

Service: hits, latencies or errors/s by path and/or response code

Business: # of orders processed, $'s per second by customer ID
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Pipeline Architecture
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Performance mantras

• Don't do it
• Do it, but don't do it again
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper

17



Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less
• Do it later
• Do it when they're not looking
• Do it concurrently
• Do it cheaper
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Metrics Store Characteristics

• Most metrics report with a tag set for quite some time

=> Therefore separate tag stores from time series stores
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Pipeline Architecture
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Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently
• Do it cheaper
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Scaling through Kafka 
Data is separated by partition to distribute it

Partitions are customers, or a mod hash of their metric name

This also gives us isolation.

Intake
Kafka partition:1Incoming
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Kafka partition:0
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Store 2
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Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data 

stores
• Do it cheaper

27



Talk Plan

1. What Are Metrics Databases?
2. Our Architecture
3. Deep Dive On Our Datastores
4. Handling Synchronization
5. Introducing Aggregation
6. Aggregation For Deeper Insights Using Sketches
7. Sketches Enabling Flexible Architecture

28



Per Customer Volume Ballparking 
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104 Number of apps; 1,000’s hosts times 10’s containers

103 Number of metrics emitted from each app/container

100 1 point a second per metric

105 Seconds in a day (actually 86,400)

101 Bytes/point (8 byte float, amortized tags)

= 1013 10 Terabytes a Day For One Average Customer



Volume Math

• $210 to store 10 TB in S3 for a month
• $60,000 for a month rolling queryable (300 TB)
• But S3 is not for real time, high throughput queries
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Cloud Storage Characteristics
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Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only



Volume Math

• 80 x1e.32xlarge DRAM for a month
• $300,000 to store for a month
• This is with no indexes or overhead 
• And people want to query much more than a month.
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Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper

33



Returning to an Example Query

“Alert when the system load, averaged across our fleet in us-east-1a for a 5 
minute interval, goes above 90%”
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Queries We Need to Support
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DESCRIBE TAGS What tags are queryable for this metric?

TAG INDEX Given a time series id, what tags were used?

TAG INVERTED 
INDEX

Given some tags and a time range, what were 
the time series ingested?

POINT STORE What are the values of a time series between 
two times?



Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper
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Performance mantras

• Don't do it
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies
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Cloud Storage Characteristics
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Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility

DRAM1 4 TB 80 GB/s 0.08 us $1,000 Instance Reboot

SSD2 60 TB 12 GB/s 1 us $60 Instance Failures

EBS io1 432 TB 12 GB/s 40 us $400 Data Center Failures

S3 Infinite 12 GB/s3 100+ ms $214 11 nines durability

Glacier Infinite 12 GB/s3 hours $44 11 nines durability

1. X1e.32xlarge, 3 year non convertible, no upfront reserved instance
2. i3en.24xlarge, 3 year non convertible, no upfront reserved instance
3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only
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Type Max Capacity Bandwidth Latency Cost/TB for 1 month Volatility
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3. Assumes can highly parallelize to load network card of 100Gbps instance type. Likely does not scale out.
4. Storage Cost only



Hybrid  Data Storage Types
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Hybrid  Data Storage Types

41

System Type Persistence

DESCRIBE TAGS Local SSD Years

TAG INDEX DRAM Cache (Hours)

Local SSD Years

TAG INVERTED INDEX DRAM Hours

On SSD Days

S3 Years

POINT STORE DRAM Hours

Local SSD Days

S3 Years

QUERY RESULTS DRAM Cache (Days)



Hybrid  Data Storage Technologies
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System Type Persistence Technology Why?

DESCRIBE TAGS Local SSD Years LevelDB High performing single node k,v

TAG INDEX DRAM Cache (Hours) Redis Very high performance, in memory k,v

Local SSD Years Cassandra Horizontal scaling, persistent k,v

TAG INVERTED INDEX DRAM Hours In house Very customized index data structures

On SSD Days RocksDB + SQLite Rich and flexible queries

S3 Years Parquet Flexible Schema over time

POINT STORE DRAM Hours In house Very customized index data structures

Local SSD Days In house Very customized index data structures

S3 Years Parquet Flexible Schema over time

QUERY RESULTS DRAM Cache (Days) Redis Very high performance, in memory k,v
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Alerts/Monitors Synchronization

• Level sensitive
• False positives is almost as important as false negative

• Small delay preferable to evaluating incomplete data
• Synchronization need is to be sure evaluation bucket is filled 

before processing
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Pipeline Architecture
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Pipeline Architecture
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Heartbeats for Synchronization

Semantics:

- 1 second tick time for metrics
- Last write wins to handle agent concurrency

- Inject fake data as heartbeat through pipeline

Then:
- Monitor evaluator ensure heartbeat gets through before evaluating next period 

Challenges:
- With sharding and multiple stores, lots of independent paths to make sure 

heartbeats go through
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Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking
• Do it concurrently - use independent horizontally scalable data stores 
• Do it cheaper - use hybrid data storage types and technologies
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Types of metrics
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Counter, aggregate by sum Gauges, aggregate by last or avg

Ex: Requests, errors/s, total 
time spent (stopwatch)

Ex: CPU/network/disk use, 
queue length 



Aggregation
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{0, 1, 0, 1, 0, 1, 0, 1, 0, 1}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

{5, 5, 5, 5, 5, 5, 5, 5, 5, 5}

{0, 2, 4, 8, 16, 32, 64, 128, 256, 512}

Time

S
p
ac
e

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Query output

Counters: {5, 40, 50, 1023}

Gauges (average): {0.5, 4, 5, 102.3}

Gauges (last): {1, 9, 5, 512}



Query characteristics
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User:

• Bursty and unpredictable
• Latency Sensitive - ideal end user response is 100ms, 1s at most.
• Skews to recent data, but want same latency on old data



Query characteristics
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Dashboards:

• Predictable
• Important enough to save
• Looking for step-function changes, e.g. performance regressions, 

changes in usage



Focus on outputs
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These graphs are both aggregating 70k series

Not a lot, but still output 10x to 2000x less than input!



Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking?
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies
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Pipeline Architecture
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Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies
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Distributions
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Aggregate by percentile or SLO 
(count of values above or below a threshold)

Ex: Latency, request size



Calculating distributions
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{0, 1, 0, 1, 0, 1, 0, 1, 0, 1}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 8, 
8, 9, 16, 32, 64, 128, 256, 
512}

p90

p50



Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper again?
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What are "sketches"?

64

Data structures designed for operating on streams of data

• Examine each item a limited number of times (ideally once)
• Limited memory usage (logarithmic to the size of the stream, 

or fixed)

Max size



Examples of sketches

HyperLogLog

• Cardinality / unique count estimation
• Used in Redis PFADD, PFCOUNT, PFMERGE

Others: Bloom filters (also for set membership), frequency 
sketches (top-N lists)
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Tradeoffs

Understand the tradeoffs - speed, accuracy, space

What other characteristics do you need?

• Well-defined or arbitrary range of inputs?
• What kinds of queries are you answering?
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Approximation for distribution metrics

What's important for approximating distribution metrics?

• Bounded error
• Performance - size, speed of inserts
• Aggregation (aka "merging")
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How do you compress a distribution
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Histograms

Basic example from OpenMetrics / Prometheus
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Histograms

Basic example from OpenMetrics / Prometheus
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Time spent Count

<= 0.05 (50ms) 24054

<= 0.1 (100ms) 33444

<= 0.2 (200ms) 100392

<= 0.5 (500ms) 129389

<= 1s 133988

> 1s 144320

median = ~158ms (using linear interpolation)

72160

158ms

p99 = ?!



Rank and relative error
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Rank and relative error
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Relative error

In metrics, specifically latency metrics, we care about about both 
the distribution of data as well as specific values

E.g., for an SLO, I want to know, is my p99 500ms or less? 

Relative error bounds mean we can answer this: Yes, within 99% 
of requests are <= 500ms +/- 1%

Otherwise stated: 99% of requests are guaranteed <= 505ms
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Fast insertion

Each insertion is just two operations - find the bucket, increase 
the count (sometimes there's an allocation)
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Fixed Size - how?

With certain distributions, we may reach the maximum number 
of buckets (in our case, 4000)

• Roll up lower buckets - lower percentiles are generally not as 
interesting!*

*Note that we've yet to find a data set that actually needs this in practice
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Aggregation and merging
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"a binary operation is commutative if changing the order of the 
operands does not change the result"

Why is this important?
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Before, during, save for later

If we have two-way mergeable sketches, we can re-aggregate 
the aggregations

• Agent
• Streaming during ingestion
• At query time
• In the data store (saving partial results)
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Pipeline Architecture
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DDSketch

DDSketch (Distributed Distribution Sketch) is open source (part 
of the agent today)

• Presenting at VLDB2019 in August
• Open-sourcing standalone versions in several languages
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Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies
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Performance mantras

• Don't do it - build the minimal synchronization needed
• Do it, but don't do it again - query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate
• Do it concurrently - use independent horizontally scalable data stores
• Do it cheaper - use hybrid data storage types and technologies, and 

use compression techniques based on what customers really need
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Summary

• Don't do it - build the bare minimal synchronization needed
• Do it, but don't do it again - use query caching
• Do it less - only index what you need
• Do it later - minimize processing on path to persistence
• Do it when they're not looking - pre-aggregate where is cost effective
• Do it concurrently - use independent horizontally scaleable data stores 
• Do it cheaper - use hybrid data storage types and technologies, and 

use compression techniques based on what customers really need

83



Thank You



Challenges and opportunities of 
aggregation

• Challenges:
• Accuracy
• Latency

• Opportunity:
• Orders of magnitude performance improvement on common and 

highly visible queries
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Human factors and dashboards
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• Human-latency sensitive - high visibility

Late-arriving data makes people nervous

• Human granularity - how many lines can you reason about on a 
dashboard?

Oh no...



Where aggregation happens
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At the metric source (agent/lambda/etc)

• Counts by sum
• Gauges by last

At query time

• Arbitrary user selection (avg/sum/min/max)
• Impacts user experience



Adding a new metric type

Counters, gauges, distributions!

Used gauges for latency, etc, but aggregate by last is not what 
you want

Need to update the agent, libraries, integrations

We're learning and building on what we have today
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Building blocks

We have a way to move data around (Kafka)

We have ways to index that data (tagsets)

We know how to separate recent and historical data

Plan for the future

[Lego / puzzle with gaps]
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Connect the dots
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