
© Copyright Azul Systems 2019

© Copyright Azul Systems 2015

@speakjava

Java at Speed:
Building a Better JVM

Simon Ritter
Deputy CTO, Azul Systems

1



© Copyright Azul Systems 2019

JVM Performance Graph: Ideal

2



© Copyright Azul Systems 2019

JVM Performance Graph: Reality

3

Bytecodes
interpreted

C1 JIT plus
profiling

C2 JIT with
Deoptimisations

Steady optimised
state GC pauses



© Copyright Azul Systems 2019

Zing: A Better JVM

4



© Copyright Azul Systems 2019

Azul Zing JVM
§ Based on OpenJDK source code
§ Passes all Java SE TCK/JCK tests

– Drop in replacement for other JVMs 
§ Hotspot collectors replaced with C4
§ Works in conjunction with Zing System Tools

– Only supported on Linux
§ Falcon JIT compiler

– C2 replacement
§ ReadyNow! warm up elimination technology

5



© Copyright Azul Systems 2019

Zing System Tools
§ Enables better memory management for JVM
§ Memory freed by JVM is returned to kernel
§ Allocation of new blocks comes from kernel

– ZST knows cache status
– Newly allocated blocks for TLAB are ‘hot’
– Not like standard JVM

§ Other clever tricks
– Contingency memory

6



© Copyright Azul Systems 2019

Azul Continuous Concurrent
Compacting Collector (C4)



© Copyright Azul Systems 2019

C4 Basics
§ Generational (young and old)

– Uses the same GC collector for both
– For efficiency rather than pause containment

§ Concurrent, parallel and compacting
§ No STW compacting fallback
§ Algorithm is mark, relocate, remap

8



© Copyright Azul Systems 2019

Loaded Value Barrier
§ Read barrier

– Tests all object references as they are loaded
§ Enforces two invariants

– Reference is marked through
– Reference points to correct object position

§ Allows for concurrent marking and relocation
§ Minimal performance overhead

– Test and jump (2 instructions)
– x86 architecture reduces this to one micro-op

9



© Copyright Azul Systems 2019

Concurrent Mark Phase

10

Root Set
GC Threads

App Threads

X

X

X

X
X



© Copyright Azul Systems 2019

Relocation Phase

11

Compaction

A B C D E

A’  B’  C’ D’  E’

A -> A’  B -> B’  C -> C’  D -> D’  E -> E’



© Copyright Azul Systems 2019

Quick Release

12

A -> A’  B -> B’  C -> C’  D -> D’  E -> E’

PHYSICAL

VIRTUAL



© Copyright Azul Systems 2019

Remapping Phase

App Threads

GC Threads

A -> A’  B -> B’  C -> C’  D -> D’  E -> E’

X

X

X



© Copyright Azul Systems 2019

Zing: Big Heaps, No Problem
§ Scales to 8Tb heap

– No degradation in pause times
§ Use one big heap, rather than many small heaps

– Less JVMs means more efficiency
§ Zing does not require big heaps

– But works well with them

14



© Copyright Azul Systems 2019

GC Tuning



© Copyright Azul Systems 2019

Non-Zing GC Tuning Options



© Copyright Azul Systems 2019

GC Tuning Used To Be Hard
Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g 

-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC 
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12 
-XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 
-XX:-UseAdaptiveSizePolicy -XX:+UseConcMarkSweepGC 
-XX:+CMSConcurrentMTEnabled -XX:+CMSParallelRemarkEnabled 
-XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 
-XX:+UseCMSInitiatingOccupancyOnly 
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc 

…



© Copyright Azul Systems 2019

GC Tuning Used To Be Hard
Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g 

-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC 
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12 
-XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 
-XX:-UseAdaptiveSizePolicy -XX:+UseConcMarkSweepGC 
-XX:+CMSConcurrentMTEnabled -XX:+CMSParallelRemarkEnabled 
-XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 
-XX:+UseCMSInitiatingOccupancyOnly 
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc 

…



© Copyright Azul Systems 2019

GC Tuning With Zing

java -Xmx1g

java -Xmx10g

java -Xmx100g

java -Xmx2t



© Copyright Azul Systems 2019

Measuring Platform Performance
§ jHiccup
§ Spends most of its time asleep

– Minimal effect on perfomance
– Wakes every 1 ms
– Records delta of time it expects to wake up
– Measured effect is what would be experienced by your 

application
§ Generates histogram log files

– These can be graphed for easy evaluation

20



© Copyright Azul Systems 2019

Small Heap, Small Latency

21

Hazelcast 2-node system with 1Gb heap Hotspot v. Zing



© Copyright Azul Systems 2019

Big Heap, Small Latency

22

Cassandra with 60Gb heap Hotspot v. Zing



© Copyright Azul Systems 2019

Azul Falcon JIT Compiler



© Copyright Azul Systems 2019

Advancing Adaptive Compilation
§ Azul Falcon JVM compiler

– Based on latest compiler research
– LLVM project

§ Better performance
– Better intrinsics
– More inlining
– Fewer compiler excludes

§ Replacement for C2 compiler



© Copyright Azul Systems 2019

Simple Code Example
§ Simple array summing loop

– A modern compiler will use vector operations for this

25



© Copyright Azul Systems 2019

More Complex Code Example
§ Conditional array cell addition loop

– Hard for compiler to identify for vector instruction use

26



© Copyright Azul Systems 2019

Traditional JVM JIT

27

Per element jumps
2 elements per iteration



© Copyright Azul Systems 2019

Falcon JIT

Using AVX2 vector instructions
32 elements per iteration

Broadwell E5-2690-v4



© Copyright Azul Systems 2019

ReadyNow!



© Copyright Azul Systems 2019

Traditional JVM

30

Application 
Warm-up



© Copyright Azul Systems 2019

ReadyNow! Solution
§ Save JVM JIT profiling information

– Classes loaded
– Classes initialised
– Instruction profiling data
– Speculative optimisation failure data

§ Data can be gathered over much longer period
– JVM/JIT profiles quickly
– Significant reduction in deoptimisations

§ Able to load, initialise and compile most code before main()

31



© Copyright Azul Systems 2019

Effect Of ReadyNow!

Customer application



© Copyright Azul Systems 2019

ReadyNow! Startup Time
Pe

rfo
rm

an
ce

Time

Pe
rfo

rm
an

ce

Time

Without ReadyNow!

With ReadyNow!

Class loading, initialising 
and compile time



© Copyright Azul Systems 2019

Falcon Pipeline

Zing JVM

Bytecode
frontend

LLVM

LLVM IR

VM
callbacks

Queries

Responses

Compiled
methods

Machine 
code



© Copyright Azul Systems 2019

Deterministic Compiler

Method for compilation

Initial IR
(Method bytecodes & live profile)

Queries and responses

Produced machine code

Given identical input

Guarantees identical output



© Copyright Azul Systems 2019

Add Compile Stashing

Zing JVM

Bytecode
frontend

LLVM

LLVM IR

VM
callbacks

Queries

Responses

Compiled
methods

Machine 
code

Compile
Stash



© Copyright Azul Systems 2019

Compile Stashing Effect
Pe

rfo
rm

an
ce

Time

Pe
rfo

rm
an

ce

Time

Without Compile Stashing

With Compile Stashing

Up to 80% reduction in compile time
and 60% reduction in CPU load



© Copyright Azul Systems 2019

Summary



© Copyright Azul Systems 2019

FalconReadyNow! & Compile Stashing

C4

JVM Performance Graph: Zing 



© Copyright Azul Systems 2019

The Zing JVM
§ Start fast
§ Go faster
§ Stay fast

§ Simple replacement for other JVMs
– No recoding necessary 

40

Try Zing free for 30 days:

azul.com/zingtrial



© Copyright Azul Systems 2019

© Copyright Azul Systems 2015

@speakjava

Thank you!

Simon Ritter
Deputy CTO, Azul Systems

41


