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JVM Performance Graph: Ideal
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JVM Performance Graph: Reality
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Zing: A Better JVM
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Azul Zing JVM
§ Based on OpenJDK source code
§ Passes all Java SE TCK/JCK tests

– Drop in replacement for other JVMs 
§ Hotspot collectors replaced with C4
§ Works in conjunction with Zing System Tools

– Only supported on Linux
§ Falcon JIT compiler

– C2 replacement
§ ReadyNow! warm up elimination technology
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Zing System Tools
§ Enables better memory management for JVM
§ Memory freed by JVM is returned to kernel
§ Allocation of new blocks comes from kernel

– ZST knows cache status
– Newly allocated blocks for TLAB are ‘hot’
– Not like standard JVM

§ Other clever tricks
– Contingency memory
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Azul Continuous Concurrent
Compacting Collector (C4)
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C4 Basics
§ Generational (young and old)

– Uses the same GC collector for both
– For efficiency rather than pause containment

§ Concurrent, parallel and compacting
§ No STW compacting fallback
§ Algorithm is mark, relocate, remap
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Loaded Value Barrier
§ Read barrier

– Tests all object references as they are loaded
§ Enforces two invariants

– Reference is marked through
– Reference points to correct object position

§ Allows for concurrent marking and relocation
§ Minimal performance overhead

– Test and jump (2 instructions)
– x86 architecture reduces this to one micro-op
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Concurrent Mark Phase
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Relocation Phase
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Compaction

A B C D E

A’  B’  C’ D’  E’

A -> A’  B -> B’  C -> C’  D -> D’  E -> E’
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Quick Release
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PHYSICAL

VIRTUAL



© Copyright Azul Systems 2019

Remapping Phase

App Threads

GC Threads

A -> A’  B -> B’  C -> C’  D -> D’  E -> E’
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Zing: Big Heaps, No Problem
§ Scales to 8Tb heap

– No degradation in pause times
§ Use one big heap, rather than many small heaps

– Less JVMs means more efficiency
§ Zing does not require big heaps

– But works well with them
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GC Tuning
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Non-Zing GC Tuning Options
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GC Tuning Used To Be Hard
Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g 

-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC 
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12 
-XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 
-XX:-UseAdaptiveSizePolicy -XX:+UseConcMarkSweepGC 
-XX:+CMSConcurrentMTEnabled -XX:+CMSParallelRemarkEnabled 
-XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 
-XX:+UseCMSInitiatingOccupancyOnly 
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc 

…
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GC Tuning Used To Be Hard
Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g 

-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC 
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12 
-XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 
-XX:-UseAdaptiveSizePolicy -XX:+UseConcMarkSweepGC 
-XX:+CMSConcurrentMTEnabled -XX:+CMSParallelRemarkEnabled 
-XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 
-XX:+UseCMSInitiatingOccupancyOnly 
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc 

…
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GC Tuning With Zing

java -Xmx1g

java -Xmx10g

java -Xmx100g

java -Xmx2t
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Measuring Platform Performance
§ jHiccup
§ Spends most of its time asleep

– Minimal effect on perfomance
– Wakes every 1 ms
– Records delta of time it expects to wake up
– Measured effect is what would be experienced by your 

application
§ Generates histogram log files

– These can be graphed for easy evaluation
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Small Heap, Small Latency
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Hazelcast 2-node system with 1Gb heap Hotspot v. Zing
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Big Heap, Small Latency
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Cassandra with 60Gb heap Hotspot v. Zing
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Azul Falcon JIT Compiler
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Advancing Adaptive Compilation
§ Azul Falcon JVM compiler

– Based on latest compiler research
– LLVM project

§ Better performance
– Better intrinsics
– More inlining
– Fewer compiler excludes

§ Replacement for C2 compiler
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Simple Code Example
§ Simple array summing loop

– A modern compiler will use vector operations for this
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More Complex Code Example
§ Conditional array cell addition loop

– Hard for compiler to identify for vector instruction use
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Traditional JVM JIT
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Per element jumps
2 elements per iteration
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Falcon JIT

Using AVX2 vector instructions
32 elements per iteration

Broadwell E5-2690-v4
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ReadyNow!
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Traditional JVM
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Application 
Warm-up
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ReadyNow! Solution
§ Save JVM JIT profiling information

– Classes loaded
– Classes initialised
– Instruction profiling data
– Speculative optimisation failure data

§ Data can be gathered over much longer period
– JVM/JIT profiles quickly
– Significant reduction in deoptimisations

§ Able to load, initialise and compile most code before main()
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Effect Of ReadyNow!

Customer application
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ReadyNow! Startup Time
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Falcon Pipeline
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Deterministic Compiler

Method for compilation

Initial IR
(Method bytecodes & live profile)

Queries and responses

Produced machine code

Given identical input

Guarantees identical output
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Add Compile Stashing
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Compile Stashing Effect
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Up to 80% reduction in compile time
and 60% reduction in CPU load
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Summary
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FalconReadyNow! & Compile Stashing

C4

JVM Performance Graph: Zing 
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The Zing JVM
§ Start fast
§ Go faster
§ Stay fast

§ Simple replacement for other JVMs
– No recoding necessary 
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Try Zing free for 30 days:

azul.com/zingtrial
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Thank you!

Simon Ritter
Deputy CTO, Azul Systems
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