
Building Resilient Serverless
Systems

@johnchapin | symphonia.io

John Chapin
• Partner, Symphonia

• Former VP Engineering, Technical Lead

• Data Engineering and Data Science teams

• 20+ yrs experience in govt, healthcare, travel, and ad-tech

• Intent Media, RoomKey, Meddius, SAIC, Booz Allen

Agenda

• What is Serverless?

• Resiliency

• Demo

• Discussion and Questions

What is Serverless?

Serverless = FaaS + BaaS!

• FaaS = Functions as a Service

• AWS Lambda, Auth0 Webtask,
Azure Functions, Google Cloud
Functions, etc...

• BaaS = Backend as a Service

• Auth0, Amazon DynamoDB, Google
Firebase, Parse, Amazon S3, etc...

go.symphonia.io/what-is-serverless

Serverless attributes

• No managing of hosts or processes

• Self auto-scaling and provisioning

• Costs based on precise usage 
(down to zero!)

• Implicit high availability

go.symphonia.io/what-is-serverless

Serverless benefits

• Cloud benefits ++

• Reduced TCO

• Scaling flexibility

• Shorter lead time

go.symphonia.io/what-is-serverless

Loss of control

• Limited configuration options

• Fewer opportunities for optimization

• Hands-off issue resolution

go.symphonia.io/what-is-serverless

Resiliency

–Werner Vogels

 
(https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html)

“Failures are a given and everything will eventually fail
over time ...”

https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html

Werner on Embracing Failure

• Systems will fail. At scale, systems will fail a lot.

• Embrace failure as a natural occurrence.

• Limit the blast radius of failures.

• Keep operating.

• Recover quickly (automate!)

K.C. Green, Gunshow #648

Failures in Serverless land

• Serverless (or Serviceful) is all about using vendor-managed services.

• Two broad classes of failures:

• Application failures (your problem, your resolution)

• Service failures (your problem, but not your resolution)

• What happens when those vendor-managed services fail?

Mitigation through architecture
• No control over resolving acute vendor failures.

• Plan for failure, architect and build applications to be resilient.

• Take advantage of:

• Vendor-designed isolation mechanisms (like AWS regions).

• Vendor services designed to work across regions (like Route 53).

• Take advantage of vendor-recommended architectural practices, like the AWS Well-
Architected Framework's Reliability Pillar:  
https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

AWS isolation mechanisms

us-east-1a

us-east-1b

eu-west-2a

eu-west-2b

sa-east-1a

sa-east-1b

eu-west-2c

us-east-1d

us-east-1c

us-east-1e

us-east-1f

sa-east-1c

Serverless resiliency on AWS
• Regional high-availability = services running across multiple availability zones

in one region.

• With EC2 (and other traditional instance-based services), it's our problem.

• With Serverless (Lambda, DynamoDB, S3, etc), AWS handle it for us.

• Global high-availability = services running across multiple regions.

• We can architect our systems for global high-availability.

• The Serverless cost model is a huge advantage!

Serverless resiliency on AWS
• Event-driven Serverless systems with externalized state mean:

• Little or no data in-flight when a failure occurs

• Data persisted to reliable stores (like DynamoDB or S3)

• Serverless continuous deployment means:

• No persistent infrastructure to re-hydrate

• Highly likely to be a portable, infrastructure-as-code approach

Not just resiliency

• Regional infrastructure is closer to regional users

• Because Serverless is "pay per request", total costs are similar

• Infrastructure-as-code minimizes incremental work in deploying to new region

• Automated multi-region deployment keeps infrastructure up-to-date

The nature of Serverless systems makes
it easypossible to architect for resiliency

to vendor failures.

Demo

Overview
• Global, highly-available API

• https://github.com/symphoniacloud/resilient-serverless-systems

• Serverless Application Model (SAM) template

• Lambda code (Typescript)

• Build system (NPM + shell)

• Elm front-end

https://github.com/symphoniacloud/resilient-serverless-systems

api.re
silient

-demo
.symp

honia
.io 

api-w
s.resil

ient-d
emo.s

ymph
onia.io

 

(eu-w
est-2)

messages

wss://

https://

/health

messages

wss://

https://

/health

eu-west-2

us-east-1

conns

conns
api.resilient-demo.symphonia.io 

api-ws.resilient-demo.symphonia.io 
(us-east-1)

Request flow
• DNS lookup for api.resilient-demo.symphonia.io

• Route 53 responds with IP address for

• lowest latency regional API Gateway endpoint

• that has a passing health check (HTTP 2xx or 3xx from /health endpoint)

• Request traverses regional API Gateway to regional Lambda

• Regional Lambda writes to regional DynamoDB table

• DynamoDB replicates data to all replica tables in other regions, last write wins

Simulating failure

• Alter us-east-1 health check to return HTTP error status

• Observe HTTP request routed to eu-west-2 instead

• Observe DynamoDB writes propagated from eu-west-2 back to us-east-1

Rough edges

• DynamoDB Global Tables not available in CloudFormation

• API Gateway WebSockets + Custom Domains not available in CloudFormation

• Can't add new replicas to DynamoDB global tables after inserting data

• SAM not compatible with CloudFormation Stack Sets

Additional approaches

• Multi-region deployment via Code Pipeline  
https://github.com/symphoniacloud/multi-region-codepipeline

• CloudFront Origin Failover 
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
high_availability_origin_failover.html

• Global Accelerator (for ELB, ALB, and EIP) 
https://aws.amazon.com/global-accelerator/

https://github.com/symphoniacloud/multi-region-codepipeline
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://aws.amazon.com/global-accelerator/

AWS Resources
• James Hamilton's "Amazon Global Network Overview" 

https://www.youtube.com/watch?v=uj7Ting6Ckk

• Rick Houlihan's DAT401: Advanced Design Patterns for DynamoDB 
https://www.youtube.com/watch?v=HaEPXoXVf2k

• https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-
gateway-and-aws-lambda/ 
(Magnus Bjorkman, November 2017)

• https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-
multiregion-architectures/ 
(Adrian Hornsby, December 2018)

• https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/ (Diego
Magalhaes, December 2018)

https://www.youtube.com/watch?v=uj7Ting6Ckk
https://www.youtube.com/watch?v=HaEPXoXVf2k
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-multiregion-architectures/
https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-multiregion-architectures/
https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/

Symphonia resources
• What is Serverless? Our 2017 report, published by O'Reilly.

• Programming AWS Lambda - Our upcoming full-length book with O'Reilly.

• Serverless Architectures - Mike's de facto industry primer on Serverless.

• Learning Lambda - A 9-part blog series to help new Lambda devs get started.

• Serverless Insights - Our email newsletter covering Serverless news, event, etc.

• The Symphonium - Our blog, featuring technical content and analysis.

https://www.oreilly.com/programming/free/what-is-serverless.csp
https://www.martinfowler.com/articles/serverless.html
https://blog.symphonia.io/learning-lambda-1f25af64161c
https://www.symphonia.io/
https://blog.symphonia.io

Stay in touch!

john@symphonia.io

@johnchapin

@symphoniacloud

symphonia.io/events

blog.symphonia.io

mailto:john@symphonia.io
https://www.symphonia.io/events
https://blog.symphonia.io

