Building Resilient Serverless
Systems

@johnchapin | symphonia.io

D




John Chapin

Partner, Symphonia
e« Former VP Engineering, Technical Lead

o Data Engineering and Data Science teams
o 20+ yrsexperience in govt, healthcare, travel, and ad-tech

e Intent Media, RoomKey, Meddius, SAIC, Booz Allen

D



Agenda

e What is Serverless?
e Resiliency
e Demo

e Discussion and Questions



What is Serverless?



Serverless = FaaS + BaaS!

OREILLY"

e FaaS =Functions as a Service What iS

S Pe
o« AWS Lambda, AuthO Webtask, erver,eSS-
Understanding the Latest Advances in

Azure Functions, Google Cloud Cloud and Service-Based Architectare
Functions, etc... U e g

e BaaS =Backend as a Service

e AuthO, Amazon DynamoDB, Google

Firebase, Parse, Amazon S3, etc... & John Chapy

go.symphonia.io/what-is-serverless w;/,



Serverless attributes

O'REILLY"®
What is
» No managing of hosts or processes Server,eSS?
glnd(;rstacll'lgling_the I?I,_ate(_?'tAAdl\1/ances in
. M : Oud and Service-Based Architecture
o Self auto-scaling and provisioning

o Costs based on precise usage
(down to zero!)

e Implicit high availability

Mike Roberts
& John Chapin

go.symphonia.io/what-is-serverless w;/,



Serverless benefits

OREILLY"

What is
. Cloud benefits ++ Serverless?

Understanding the Latest Advances in

Cloud and Service-Based Architecture
e Reduced TCO X et
e Scaling flexibility

e Shorter lead time

Mike Roberts
& John Chapin

go.symphonia.io/what-is-serverless w;/,



Loss of control

OREILLY"

Whatis
Serverless?

Understanding the Latest Advances in
Cloud and Service-Based Architecture

\, Wl

e Limited configuration options
e Fewer opportunities for optimization

e Hands-off issue resolution

Mike Roberts
& John Chapin

go.symphonia.io/what-is-serverless w;/,



Resiliency




“Failures are a given and everything will eventually fail
over time...”

-Werner Vogels

(https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html) C/)';/'



https://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html

Werner on Embracing Failure

o Systems will fail. At scale, systems will fail a lot.
e Embrace failure as a natural occurrence.

e Limitthe blast radius of failures.

o Keep operating.

e Recover quickly (automate!)



K.C. Green, Gunshow #648



Failures in Serverless land

o Serverless (or Serviceful) is all about using vendor-managed services.
e Two broad classes of failures:

o Application failures (your problem, your resolution)

o Service failures (your problem, but not your resolution)

e What happens when those vendor-managed services fail?



Mitigation through architecture

e No control over resolving acute vendor failures.
o Plan for failure, architect and build applications to be resilient.
e Take advantage of:
e Vendor-designed isolation mechanisms (like AWS regions).
e Vendor services designed to work across regions (like Route 53).
o Take advantage of vendor-recommended architectural practices, like the AWS Well-

Architected Framework's Reliability Pillar:
https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

D


https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf

AWS isolation mechanisms

eu-west-2a
us-east-1a

us-east-1c
eu-west-2c¢

us-east-1f
~—

sa-east-1c




Serverless resiliency on AWS

e Regional high-availability = services running across multiple availability zones
In one region.

o With EC2 (and other traditional instance-based services), it's our problem.
o With Serverless (Lambda, DynamoDB, S3, etc), AWS handle it for us.

e Global high-availability = services running across multiple regions.
e We can architect our systems for global high-availability.

e The Serverless cost model is a huge advantage!



Serverless resiliency on AWS

e Event-driven Serverless systems with externalized state mean:
e Little or no data in-flight when a failure occurs
e Data persisted to reliable stores (like DynamoDB or S3)

o Serverless continuous deployment means:
e No persistent infrastructure to re-hydrate

e Highly likely to be a portable, infrastructure-as-code approach



Not just resiliency

e Regional infrastructure is closer to regional users
e Because Serverless is "pay per request"”, total costs are similar
e Infrastructure-as-code minimizes incremental work in deploying to new region

e Automated multi-region deployment keeps infrastructure up-to-date



The nature of Serverless systems makes
It easypossible to architect for resiliency
to vendor failures.






Overview

e Global, highly-available API

e https://github.com/symphoniacloud/resilient-serverless-systems

o Serverless Application Model (SAM) template
« Lambda code (Typescript)

e Build system (NPM + shell)

e Elm front-end


https://github.com/symphoniacloud/resilient-serverless-systems

)\ https://




Request flow

e DNS lookup for api.resilient-demo.symphonia.io
e Route 53 responds with IP address for
e lowest latency regional APl Gateway endpoint
e that has a passing health check (HTTP 2xx or 3xx from [health endpoint)
e Request traverses regional APl Gateway to regional Lambda
e Regional Lambda writes to regional DynamoDB table

e DynamoDB replicates data to all replica tables in other regions, last write wins

D



Simulating failure

o Alter us-east-1 health check to return HTTP error status
e Observe HTTP request routed to eu-west-2 instead

e Observe DynamoDB writes propagated from eu-west-2 back to us-east-1



Rough edges

e DynamoDB Global Tables not available in CloudFormation
e APl Gateway WebSockets + Custom Domains not available in CloudFormation
e Can't add new replicas to DynamoDB global tables after inserting data

e SAM not compatible with CloudFormation Stack Sets



Additional approaches

e Multi-region deployment via Code Pipeline
https://github.com/symphoniacloud/multi-region-codepipeline

e CloudFront Origin Failover
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/

high_availability origin_failover.html

e Global Accelerator (for ELB, ALB, and EIP)
https://aws.amazon.com/global-accelerator/



https://github.com/symphoniacloud/multi-region-codepipeline
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/high_availability_origin_failover.html
https://aws.amazon.com/global-accelerator/

AWS Resources

e James Hamilton's "Amazon Global Network Overview"
https://www.youtube.com/watch?v=uj7Ting6Ckk

e Rick Houlihan's DAT401: Advanced Design Patterns for DynamoDB
https://www.youtube.com/watch?v=HaEPXoXV{2k

o https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-
gateway-and-aws-lambda/
(Magnus Bjorkman, November 2017)

e https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-
multiregion-architectures/
(Adrian Hornsby, December 2018)

o https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/ (Diego
Magalhaes, December 2018)

D


https://www.youtube.com/watch?v=uj7Ting6Ckk
https://www.youtube.com/watch?v=HaEPXoXVf2k
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-multiregion-architectures/
https://aws.amazon.com/blogs/database/how-to-use-amazon-dynamodb-global-tables-to-power-multiregion-architectures/
https://aws.amazon.com/blogs/compute/announcing-websocket-apis-in-amazon-api-gateway/

Symphonia resources

« What s Serverless? Our 2017 report, published by O'Reilly.

e« Programming AWS Lambda - Our upcoming full-length book with O'Reilly.

e Serverless Architectures - Mike's de facto industry primer on Serverless.

e Learning Lambda - A 9-part blog series to help new Lambda devs get started.

o Serverless Insights - Our email newsletter covering Serverless news, event, etc.

e« The Symphonium - Our blog, featuring technical content and analysis.

D


https://www.oreilly.com/programming/free/what-is-serverless.csp
https://www.martinfowler.com/articles/serverless.html
https://blog.symphonia.io/learning-lambda-1f25af64161c
https://www.symphonia.io/
https://blog.symphonia.io

Stay in touch!

john@symphonia.io

@johnchapin
@symphoniacloud

symphonia.io/events

blog.symphonia.io



mailto:john@symphonia.io
https://www.symphonia.io/events
https://blog.symphonia.io

