
@kavya719

Let’s talk locks!



kavya



locks.



“locks are slow”



“locks are slow”

lock contention causes ~10x latency

la
te

nc
y 

(m
s)

time



“locks are slow”

…but they’re used everywhere.
from schedulers to databases and web servers.

lock contention causes ~10x latency

la
te

nc
y 

(m
s)

time



“locks are slow”

…but they’re used everywhere.
from schedulers to databases and web servers.

lock contention causes ~10x latency

la
te

nc
y 

(m
s)

time
?



let’s analyze its performance! 
performance models for contention

let’s build a lock! 
a tour through lock internals

let’s use it, smartly! 
a few closing strategies



our case-study
Lock implementations are hardware, ISA, OS and language specific:  
 
We assume an x86_64 SMP machine running a modern Linux. 
We’ll look at the lock implementation in Go 1.12.

CPU 0 CPU 1

cache cache
interconnect

memory

simplified SMP system diagram



 use as you would threads  
 > go handle_request(r) 

but user-space threads: 
managed entirely by the Go runtime, not the operating system.

The unit of concurrent execution: goroutines.

a brief go primer



 use as you would threads  
 > go handle_request(r) 

but user-space threads: 
managed entirely by the Go runtime, not the operating system.

The unit of concurrent execution: goroutines.

a brief go primer

Data shared between goroutines must be synchronized. 
One way is to use the blocking, non-recursive lock construct: 

> var mu sync.Mutex 
  mu.Lock()  
  … 
  mu.Unlock()



let’s build a lock!
a tour through lock internals.



want: “mutual exclusion”
only one thread has access to shared data at any given time



T1 
running on CPU 1

T2 
running on CPU 2

func reader() { 
  // Read a task 
  t := tasks.get() 
 
  // Do something with it. 
  ... 
}

func writer() { 
  // Write to tasks 
  tasks.put(t) 
}

// track whether tasks is 
// available (0) or not (1) 
// shared ring buffer 
var tasks Tasks

want: “mutual exclusion”
only one thread has access to shared data at any given time



func reader() { 
  // Read a task 
  t := tasks.get() 
 
  // Do something with it. 
  ... 
}

func writer() { 
  // Write to tasks 
  tasks.put(t) 
}

// track whether tasks is 
// available (0) or not (1) 
// shared ring buffer 
var tasks Tasks

want: “mutual exclusion”
…idea! use a flag?

T1 
running on CPU 1

T2 
running on CPU 2



// track whether tasks can be 
// accessed (0) or not (1) 
var flag int 
var tasks Tasks



// track whether tasks can be 
// accessed (0) or not (1) 
var flag int 
var tasks Tasks

func reader() { 
  for { 
    /* If flag is 0, 
       can access tasks. */ 
    if flag == 0 { 
      /* Set flag */ 
      flag++ 
      ... 
      /* Unset flag */ 
      flag-- 
      return 
    } 
    /* Else, keep looping. */  
  } 
 }

T1 
running on CPU 1



// track whether tasks can be 
// accessed (0) or not (1) 
var flag int 
var tasks Tasks

func reader() { 
  for { 
    /* If flag is 0, 
       can access tasks. */ 
    if flag == 0 { 
      /* Set flag */ 
      flag++ 
      ... 
      /* Unset flag */ 
      flag-- 
      return 
    } 
    /* Else, keep looping. */  
  } 
 }

func writer() { 
  for { 
    /* If flag is 0, 
       can access tasks. */ 
    if flag == 0 { 
      /* Set flag */ 
      flag++ 
      ... 
      /* Unset flag */ 
      flag-- 
      return 
    } 
    /* Else, keep looping. */  
  } 
 }

T1 
running on CPU 1

T2 
running on CPU 2



// track whether tasks can be 
// accessed (0) or not (1) 
var flag int 
var tasks Tasks

func reader() { 
  for { 
    /* If flag is 0, 
       can access tasks. */ 
    if flag == 0 { 
      /* Set flag */ 
      flag++ 
      ... 
      /* Unset flag */ 
      flag-- 
      return 
    } 
    /* Else, keep looping. */  
  } 
 }

func writer() { 
  for { 
    /* If flag is 0, 
       can access tasks. */ 
    if flag == 0 { 
      /* Set flag */ 
      flag++ 
      ... 
      /* Unset flag */ 
      flag-- 
      return 
    } 
    /* Else, keep looping. */  
  } 
 }

T1 
running on CPU 1

T2 
running on CPU 2



flag++ 

T1 
running on CPU 1



flag++ 

CPU 

m
em

or
y

1. Read (0)

2. Modify

3. Write (1)

T1 
running on CPU 1



R

W

flag++ 

timeline of 
memory operations

T1 
running on CPU 1



R

R

W

flag++ 

if flag == 0 

timeline of 
memory operations

T1 
running on CPU 1

T2 
running on CPU 2

T2 may observe T1’s RMW half-complete



atomicity
A memory operation is non-atomic if it can be 
observed half-complete by another thread. 

An operation may be non-atomic because it: 

• uses multiple CPU instructions:  
operations on a large data structure;  
compiler decisions.  

• use a single non-atomic CPU instruction:  
RMW instructions; unaligned loads and stores.
> o := Order { 
id: 10, 
name: “yogi bear”, 
order: “pie”, 
count: 3, 

}



atomicity
A memory operation is non-atomic if it can be 
observed half-complete by another thread. 

An operation may be non-atomic because it: 

• uses multiple CPU instructions:  
operations on a large data structure;  
compiler decisions.  

• uses a single non-atomic CPU instruction: 
RMW instructions; unaligned loads and stores.

> flag++



atomicity
A memory operation is non-atomic if it can be 
observed half-complete by another thread. 

An operation may be non-atomic because it: 

• uses multiple CPU instructions:  
operations on a large data structure;  
compiler decisions.  

• uses a single non-atomic CPU instruction: 
RMW instructions; unaligned loads and stores.

> flag++

An atomic operation is an “indivisible”  
memory access.

In x86_64, loads, stores that are  
naturally aligned up to 64b.*

guarantees the data item fits within a cache line; 
cache coherency guarantees a consistent view for a  
single cache line.

* these are not the only guaranteed atomic operations.



nope; not atomic. 
…idea! use a flag?



func reader() { 
  for { 
    /* If flag is 0, 
       can access tasks. */ 
    if flag == 0 { 
      /* Set flag */ 
      flag = 1 
      t  := tasks.get() 
      ... 
      /* Unset flag */ 
      flag = 0 
      return 
    } 
    /* Else, keep looping. */  
  } 
 }

T1 
running on CPU 1



the compiler may reorder operations.

// Sets flag to 1 & reads data. 
func reader() { 
  flag = 1 
  t := tasks.get() 
  ... 
  flag = 0 



the processor may reorder operations.

StoreLoad reordering 
load t before store flag = 1

// Sets flag to 1 & reads data. 
func reader() { 
  flag = 1 
  t := tasks.get() 
  ... 
  flag = 0 



memory access reordering
The compiler, processor can reorder memory operations to optimize execution.



memory access reordering
The compiler, processor can reorder memory operations to optimize execution.

• The only cardinal rule is sequential consistency for single threaded programs. 

• Other guarantees about compiler reordering are captured by a  
language’s memory model:  
C++, Go guarantee data-race free programs will be sequentially consistent. 

• For processor reordering, by the hardware memory model: 
x86_64 provides Total Store Ordering (TSO).



memory access reordering
The compiler, processor can reorder memory operations to optimize execution.

• The only cardinal rule is sequential consistency for single threaded programs. 

• Other guarantees about compiler reordering are captured by a  
language’s memory model:  
C++, Go guarantee data-race free programs will be sequentially consistent. 

• For processor reordering, by the hardware memory model: 
x86_64 provides Total Store Ordering (TSO).



memory access reordering
The compiler, processor can reorder memory operations to optimize execution.

• The only cardinal rule is sequential consistency for single threaded programs. 

• Other guarantees about compiler reordering are captured by a  
language’s memory model:  
C++, Go guarantee data-race free programs will be sequentially consistent. 

• For processor reordering, by the hardware memory model: 
x86_64 provides Total Store Ordering (TSO).

a relaxed consistency model. 
most reorderings are invalid but StoreLoad is game; 
allows processor to hide the latency of writes.



nope; not atomic and no memory order guarantees. 
…idea! use a flag?



nope; not atomic and no memory order guarantees. 
…idea! use a flag?

need a construct that provides atomicity and prevents memory reordering.



nope; not atomic and no memory order guarantees. 
…idea! use a flag?

need a construct that provides atomicity and prevents memory reordering.

…the hardware provides!



For guaranteed atomicity and to prevent memory reordering.

special hardware instructions

x86 example:  
XCHG (exchange)

these instructions are called memory barriers. 
they prevent reordering by the compiler too. 
x86 example: MFENCE, LFENCE, SFENCE.



special hardware instructions

The x86 LOCK instruction prefix provides both. 

Used to prefix memory access instructions:   
LOCK ADD

For guaranteed atomicity and to prevent memory reordering.

} atomic operations in languages like Go:  
                      atomic.Add 

     atomic.CompareAndSwap



special hardware instructions

The x86 LOCK instruction prefix provides both. 

Used to prefix memory access instructions:   
LOCK ADD

For guaranteed atomicity and to prevent memory reordering.

} atomic operations in languages like Go:  
                      atomic.Add 

     atomic.CompareAndSwapLOCK CMPXCHG

Atomic compare-and-swap (CAS) conditionally updates a variable: 
checks if it has the expected value and if so, changes it to the desired value.



the CAS succeeded; 
we set flag to 1.

flag was 1 so our CAS failed;  
try again.

var flag int 
var tasks Tasks

func reader() { 
  for { 

// Try to atomically CAS flag from 0 -> 1 
    if atomic.CompareAndSwap(&flag, 0, 1) { 
      ... 
        
       // Atomically set flag back to 0. 
       atomic.Store(&flag, 0) 
       return 
    } 

    // CAS failed, try again :) 
  } 
}

baby’s first lock



var flag int 
var tasks Tasks

func reader() { 
  for { 

// Try to atomically CAS flag from 0 -> 1 
    if atomic.CompareAndSwap(&flag, 0, 1) { 
      ... 
        
       // Atomically set flag back to 0. 
       atomic.Store(&flag, 0) 
       return 
    } 

    // CAS failed, try again :) 
  } 
}

baby’s first lock: spinlocks 

This is a simplified spinlock.

Spinlocks are used extensively in 
the Linux kernel.}



The atomic CAS is the quintessence of any lock implementation.



cost of an atomic operation

Run on a 12-core x86_64 SMP machine. 

Atomic store to a C _Atomic int, 10M times in 
a tight loop. 
Measure average time taken per operation 
(from within the program). 

With 1 thread: ~13ns (vs. regular operation: ~2ns)  
With 12 cpu-pinned threads: ~110ns

threads are effectively serialized

var flag int 
var tasks Tasks

func reader() { 
  for { 

// Try to atomically CAS flag from 0 -> 1 
    if atomic.CompareAndSwap(&flag, 0, 1) { 
      ... 
        
       // Atomically set flag back to 0. 
       atomic.Store(&flag, 0) 
       return 
    } 

    // CAS failed, try again :) 
  } 
}

spinlocks



sweet.
We have a scheme for mutual exclusion that provides atomicity and 
memory ordering guarantees.



sweet.

…but
spinning for long durations is wasteful; it takes away CPU time from  
other threads.

We have a scheme for mutual exclusion that provides atomicity and 
memory ordering guarantees.



sweet.

…but
spinning for long durations is wasteful; it takes away CPU time from  
other threads.

We have a scheme for mutual exclusion that provides atomicity and 
memory ordering guarantees.

enter the operating system!



Linux’s futex
Interface and mechanism for userspace code to ask the kernel to suspend/ resume threads.

futex syscall kernel-managed queue



flag can be 0: unlocked  
                     1: locked 
                     2: there’s a waiter

var flag int 
var tasks Tasks



set flag to 2 (there’s a waiter) 

flag can be 0: unlocked  
                     1: locked 
                     2: there’s a waiter

futex syscall to tell the kernel 
to suspend us until flag changes.

when we’re resumed, we’ll CAS again.

var flag int 
var tasks Tasks

func reader() { 
  for { 
    if atomic.CompareAndSwap(&flag, 0, 1) { 
     ... 
    } 

    // CAS failed, set flag to sleeping. 
    v := atomic.Xchg(&flag, 2) 

    // and go to sleep. 
    futex(&flag, FUTEX_WAIT, ...) 
  } 
}

T1’s CAS fails 
(because T2 has set the flag)

T1



in the kernel:

keyA 
(from the userspace address: 

&flag)

 keyA

 T1

futex_q

1. arrange for thread to be resumed in the future:  
    add an entry for this thread in the kernel queue for the address we care about



in the kernel:

keyA 
(from the userspace address: 

&flag)

 keyA

 T1

futex_q

keyother

 Tother

futex_q 

keyother
hash(keyA)

1. arrange for thread to be resumed in the future:  
    add an entry for this thread in the kernel queue for the address we care about



in the kernel:

keyA 
(from the userspace address: 

&flag)

 keyA

 T1

futex_q

keyother

 Tother

futex_q 

keyother
hash(keyA)

1. arrange for thread to be resumed in the future:  
    add an entry for this thread in the kernel queue for the address we care about

2. deschedule the calling thread to suspend it.



T2 is done  
(accessing the shared data)

T2

func writer() { 
  for { 
    if atomic.CompareAndSwap(&flag, 0, 1) { 
     ...  
    
   // Set flag to unlocked. 

     v := atomic.Xchg(&flag, 0) 
     if  v == 2 { 
       // If there was a waiter, issue a wake up. 
       futex(&flag, FUTEX_WAKE, ...) 
     } 
     return 
    }  

    v := atomic.Xchg(&flag, 2) 
    futex(&flag, FUTEX_WAIT, …) 
  } 
}



T2 is done  
(accessing the shared data)

T2

func writer() { 
  for { 
    if atomic.CompareAndSwap(&flag, 0, 1) { 
     ...  
    
   // Set flag to unlocked. 

     v := atomic.Xchg(&flag, 0) 
     if  v == 2 { 
       // If there was a waiter, issue a wake up. 
       futex(&flag, FUTEX_WAKE, ...) 
     } 
     return 
    } 

    v := atomic.Xchg(&flag, 2) 
    futex(&flag, FUTEX_WAIT, …) 
  } 
}

if flag was 2, there’s at least one waiter

futex syscall to tell the kernel to wake 
a waiter up.



func writer() { 
  for { 
    if atomic.CompareAndSwap(&flag, 0, 1) { 
     ...  
    
   // Set flag to unlocked. 

     v := atomic.Xchg(&flag, 0) 
     if  v == 2 { 
       // If there was a waiter, issue a wake up. 
       futex(&flag, FUTEX_WAKE, ...) 
     } 
     return 
    } 

    v := atomic.Xchg(&flag, 2) 
    futex(&flag, FUTEX_WAIT, …) 
  } 
}

if flag was 2, there’s at least one waiter

futex syscall to tell the kernel to wake 
a waiter up.

hashes the key  
walks the hash bucket’s futex queue 
finds the first thread waiting on the address 
schedules it to run again!

}

T2 is done  
(accessing the shared data)

T2



pretty convenient!

pthread mutexes use futexes.

That was a hella simplified futex. 
…but we still have a nice, lightweight primitive to build synchronization constructs.



cost of a futex

Run on a 12-core x86_64 SMP machine. 

Lock & unlock a pthread mutex 10M times in loop 
(lock, increment an integer, unlock).  

Measure average time taken per lock/unlock pair 
(from within the program). 

uncontended case (1 thread): ~13ns 
contended case (12 cpu-pinned threads): ~0.9us



cost of a futex

Run on a 12-core x86_64 SMP machine. 

Lock & unlock a pthread mutex 10M times in loop 
(lock, increment an integer, unlock).  

Measure average time taken per lock/unlock pair 
(from within the program). 

uncontended case (1 thread): ~13ns 
contended case (12 cpu-pinned threads): ~0.9us

cost of the user-space atomic CAS = ~13ns
}

cost of the atomic CAS +  
syscall + thread context switch = ~0.9us

}



spinning vs. sleeping

Spinning makes sense for short durations; it keeps the thread on the CPU. 
The trade-off is it uses CPU cycles not making progress. 
So at some point, it makes sense to pay the cost of the context switch to go to sleep. 

There are smart “hybrid” futexes: 
CAS-spin a small, fixed number of times —> if that didn’t lock, make the futex syscall. 
Example: the Go runtime’s futex implementation.



spinning vs. sleeping

Spinning makes sense for short durations; it keeps the thread on the CPU. 
The trade-off is it uses CPU cycles not making progress. 
So at some point, it makes sense to pay the cost of the context switch to go to sleep. 

There are smart “hybrid” futexes: 
CAS-spin a small, fixed number of times —> if that didn’t lock, make the futex syscall. 
Examples: the Go runtime’s futex implementation; a variant of the pthread_mutex.



…can we do better for user-space threads?



…can we do better for user-space threads?

goroutines are user-space threads. 
The go runtime multiplexes them onto threads. 
lighter-weight and cheaper than threads: 
goroutine switches = ~tens of ns;  
thread switches = ~a µs. CPU core

 g1 g6g2

thread

CPU core } OS scheduler

Go scheduler}



…can we do better for user-space threads?

goroutines are user-space threads. 
The go runtime multiplexes them onto threads. 
lighter-weight and cheaper than threads: 
goroutine switches = ~tens of ns;  
thread switches = ~a µs. CPU core

 g1 g6g2

thread

CPU core } OS scheduler

Go scheduler}

we can block the goroutine without blocking the underlying thread!
to avoid the thread context switch cost.



This is what the Go runtime’s semaphore does! 

The semaphore is conceptually very similar to futexes in Linux*, but it is used to  
sleep/wake goroutines: 
     

a goroutine that blocks on a mutex is descheduled, but not the underlying thread. 
the goroutine wait queues are managed by the runtime, in user-space. 

* There are, of course, differences in implementation though. 



the goroutine wait queues are managed  
by the Go runtime, in user-space. 

var flag int 
var tasks Tasks

func reader() { 
  for { 
    // Attempt to CAS flag. 
    if atomic.CompareAndSwap(&flag, ...) { 
     ... 
    } 

    // CAS failed; add G1 as a waiter for flag. 
    root.queue() 

  // and to sleep. 
  futex(&flag, FUTEX_WAIT, ...) 
  } 
}

G1’s CAS fails 
(because G2 has set the flag)

G1



&flag 
(the userspace address)

&flag

 G1  G3

G4

&other
hash(&flag)

}

the top-level waitlist for a hash bucket  
is implemented as a treap

}

there’s a second-level wait queue  
for each unique address

the goroutine wait queues 
(in user-space, managed by the go runtime)



the goroutine wait queues are managed  
by the Go runtime, in user-space. 

var flag int 
var tasks Tasks

func reader() { 
  for { 
    // Attempt to CAS flag. 
    if atomic.CompareAndSwap(&flag, ...) { 
     ... 
    } 

    // CAS failed; add G1 as a waiter for flag. 
    root.queue() 

    // and suspend G1. 
    gopark() 
  } 
}

G1’s CAS fails 
(because G2 has set the flag)

G1

the Go runtime deschedules the goroutine; 
keeps the thread running!



G2’s done 
(accessing the shared data)

G2

func writer() { 
  for { 
    if atomic.CompareAndSwap(&flag, 0, 1) { 
     ...  
    
   // Set flag to unlocked. 

     atomic.Xadd(&flag, ...) 
 
     // If there’s a waiter, reschedule it. 
     waiter := root.dequeue(&flag) 
      goready(waiter) 
     return 
    } 

    root.queue() 
    gopark() 
  } 
}

find the first waiter goroutine and reschedule it ]



this is clever.
Avoids the hefty thread context switch cost in the contended case, 
up to a point.



this is clever.
Avoids the hefty thread context switch cost in the contended case, 
up to a point.

but…



func reader() { 
  for { 
    if atomic.CompareAndSwap(&flag, ...) { 
     ... 
    } 

    // CAS failed; add G1 as a waiter for flag. 
    semaroot.queue() 

    // and suspend G1. 
    gopark() 
  } 
}

once G1 is resumed,  
it will try to CAS again.

Resumed goroutines have to compete with any other goroutines trying to CAS.  
 
They will likely lose: 
there’s a delay between when the flag was set to 0 and this goroutine was rescheduled..G1



Resumed goroutines have to compete with any other goroutines trying to CAS.  
 
They will likely lose: 
there’s a delay between when the flag was set to 0 and this goroutine was rescheduled..

   // Set flag to unlocked. 
     atomic.Xadd(&flag, …) 
 
     // If there’s a waiter, reschedule it. 
     waiter := root.dequeue(&flag) 
      goready(waiter) 
     return 



Resumed goroutines have to compete with any other goroutines trying to CAS.  
 
They will likely lose: 
there’s a delay between when the flag was set to 0 and this goroutine was rescheduled..

So, the semaphore implementation may end up: 

• unnecessarily resuming a waiter goroutine  
results in a goroutine context switch again. 

• cause goroutine starvation 
can result in long wait times, high tail latencies.



Resumed goroutines have to compete with any other goroutines trying to CAS.  
 
They will likely lose: 
there’s a delay between when the flag was set to 0 and this goroutine was rescheduled..

So, the semaphore implementation may end up: 

• unnecessarily resuming a waiter goroutine  
results in a goroutine context switch again. 

• cause goroutine starvation 
can result in long wait times, high tail latencies.

the sync.Mutex implementation adds a layer that fixes these.



go’s sync.Mutex
Is a hybrid lock that uses a semaphore to sleep / wake goroutines.



go’s sync.Mutex

Additionally, it tracks extra state to:

Is a hybrid lock that uses a semaphore to sleep / wake goroutines.

prevent unnecessarily waking up a goroutine 
“There’s a goroutine actively trying to CAS”: An unlock in this case does not wake a waiter.  

prevent severe goroutine starvation 
“a waiter has been waiting”: 
If a waiter is resumed but loses the CAS again, it’s queued at the head of the wait queue. 
If a waiter fails to lock for 1ms, switch the mutex to “starvation mode”.

prevent unnecessarily waking up a goroutine 
“There’s a goroutine actively trying to CAS”: An unlock in this case does not wake a waiter. 

prevent severe goroutine starvation 
“a waiter has been waiting”: 
If a waiter is resumed but loses the CAS again, it’s queued at the head of the wait queue. 
If a waiter fails to lock for 1ms, switch the mutex to “starvation mode”.



go’s sync.Mutex

Additionally, it tracks extra state to:

Is a hybrid lock that uses a semaphore to sleep / wake goroutines.

prevent unnecessarily waking up a goroutine 
“There’s a goroutine actively trying to CAS”: An unlock in this case does not wake a waiter. 

prevent severe goroutine starvation 
“a waiter has been waiting”: 
If a waiter is resumed but loses the CAS again, it’s queued at the head of the wait queue. 
If a waiter fails to lock for 1ms, switch the mutex to “starvation mode”.

other goroutines cannot CAS, they must queue 
The unlock hands the mutex off to the first waiter. 
i.e. the waiter does not have to compete.



how does it perform?

Run on a 12-core x86_64 SMP machine. 

Lock & unlock a Go sync.Mutex 10M times in loop 
(lock, increment an integer, unlock).  

Measure average time taken per lock/unlock pair 
(from within the program). 

uncontended case (1 goroutine): ~13ns 
contended case (12 goroutines): ~0.8us



how does it perform?

Contended case performance of C vs. Go: 
Go initially performs better than C 

but they ~converge as concurrency gets high enough.

}



how does it perform?

Contended case performance of C vs. Go: 
Go initially performs better than C 

but they ~converge as concurrency gets high enough.

}}



                       uses a semaphore

sync.Mutex



&flag
 G1  G3

G4

&other

the Go runtime semaphore’s  
hash table for waiting goroutines:

each hash bucket needs a lock. 
…and it’s a futex!



&flag
 G1  G3

G4

&other

the Go runtime semaphore’s  
hash table for waiting goroutines:

each hash bucket needs a lock. 
…it’s a futex!



&flag
 G1  G3

G4

&other &flag
 G1

the Linux kernel’s futex hash table 
for waiting threads:

each hash bucket needs a lock. 
…it’s a spin lock!

each hash bucket needs a lock. 
…it’s a futex!

the Go runtime semaphore’s  
hash table for waiting goroutines:



&flag
 G1  G3

G4

&other &flag
 G1

each hash bucket needs a lock. 
…it’s a spinlock!

each hash bucket needs a lock. 
…it’s a futex!

the Go runtime semaphore’s  
hash table for waiting goroutines:

the Linux kernel’s futex hash table 
for waiting threads:



uses futexes

uses spin-locks

It’s locks all the way down!

                       uses a semaphore

sync.Mutex



let’s analyze its performance!
performance models for contention.



uncontended case 
Cost of the atomic CAS.

contended case
In the worst-case, cost of failed atomic operations + spinning + goroutine context switch +  
thread context switch. 
….But really, depends on degree of contention.



how many threads do we need to support a target throughput?  
while keeping response time the same.

how does response time change with the number of threads? 
assuming a constant workload.

“How does application performance change with concurrency?”



Amdahl’s Law

Speed-up depends on the fraction of the workload that can be parallelized (p).

speed-up with N threads    =              1 
                                                          (1 — p)  +  p 

N



a simple experiment

Measure time taken to complete a fixed workload. 

serial fraction holds a lock (sync.Mutex). 
scale parallel fraction (p) from 0.25 to 0.75 
measure time taken for number of goroutines (N) = 1 —> 12.



p = 0.75

p = 0.25

Amdahl’s Law

Speed-up depends on the fraction of the workload that can be parallelized (p).



Universal Scalability Law (USL)

• contention penalty 
due to serialization for shared resources. 
examples: lock contention, database 
contention. 

• crosstalk penalty 
due to coordination for coherence. 

    examples: servers coordinating to synchronize 
    mutable state.

αN

Scalability depends on contention and cross-talk.



Universal Scalability Law (USL)

• contention penalty 
due to serialization for shared resources. 
examples: lock contention, database 
contention. 

• crosstalk penalty 
due to coordination for coherence. 

    examples: servers coordinating to synchronize 
    mutable state.

αN

Scalability depends on contention and cross-talk.

βN2



Universal Scalability Law (USL)

           N        
(αN + βN2 + C)

N
C

N
(αN + C)

contention and crosstalk

linear scaling

contention

th
ro

ug
hp

ut

concurrency

throughput of N threads    =                N 
                                                          (αN + βN2 + C)



p = 0.75p = 0.25

USL curves 
plotted using the R usl package

p = parallel fraction of workload



let’s use it, smartly!
a few closing strategies.



but first, profile!
Go mutex 
• Go mutex contention profiler  

https://golang.org/doc/diagnostics.html 

Linux 
• perf-lock: 

perf examples by Brendan Gregg  
Brendan Gregg article on off-cpu analysis 

• eBPF: 
example bcc tool to measure user lock contention 

• Dtrace, systemtap 
• mutrace, Valgrind-drd 

pprof mutex contention profile

https://golang.org/doc/diagnostics.html
http://brendangregg.com/perf.html
http://brendangregg.com/offcpuanalysis.html
https://github.com/iovisor/bcc/issues/892


strategy I: don’t use a lock
• remove the need for synchronization from hot-paths: 

typically involves rearchitecting. 
• reduce the number of lock operations: 

doing more thread local work, buffering, batching, copy-on-write. 
• use atomic operations. 
• use lock-free data structures 

see: http://www.1024cores.net/

http://www.1024cores.net/


strategy II: granular locks
• shard data:  

but ensure no false sharing, by padding to cache line size. 
examples:  
go runtime semaphore’s hash table buckets; 
Linux scheduler’s per-CPU runqueues; 
Go scheduler’s per-CPU runqueues; 

• use read-write locks

scheduler benchmark
(CreateGoroutineParallel)

modified scheduler: global lock; runqueue
go scheduler: per-CPU core, lock-free runqueues

https://github.com/golang/go/blob/master/src/runtime/sema.go#L49
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw/edit


strategy III: do less serial work

lock contention causes ~10x latency

la
te

nc
y 

time time
smaller critical section change

• move computation out of critical section: 
typically involves rearchitecting.



bonus strategy:
• contention-aware schedulers 
   example: Contention-aware scheduling in MySQL 8.0 Innodb

https://web.eecs.umich.edu/~mozafari/php/data/uploads/lock-schd-report.pdf


 

Special thanks to Eben Freeman, Justin Delegard, Austin Duffield for reading drafts of this.

 

@kavya719
speakerdeck.com/kavya719/lets-talk-locks

References 
Jeff Preshing’s excellent blog series 
Memory Barriers: A Hardware View for Software Hackers 
LWN.net on futexes  
The Go source code 
The Universal Scalability Law Manifesto, Neil Gunther

http://speakerdeck.com/kavya719/applied-performance-theory
http://speakerdeck.com/kavya719/applied-performance-theory
https://speakerdeck.com/kavya719/lets-talk-locks
https://preshing.com/archives/
http://www.puppetmastertrading.com/images/hwViewForSwHackers.pdf
https://lwn.net/Articles/360699/
https://github.com/golang/go/tree/master/src
http://www.perfdynamics.com/Manifesto/USLscalability.html

