What Came First?

The Ordering of Events
in Systems

@kavya719

kavya

the design of
concurrent systems

User Data Center

nther

- ‘\ —

services v —~ -

v N other
v Y
~ N storage
— — \
«— — — — — " —— o
I ani e —
web fapl |4 —

= VS le—— |

datahase

Web and AP traffic Wab sockate for real-time mezzaging

\-l./

MMSJ

Amazon EC2
Messaze seryer

Elastic Load Balancing

Frevention of servers
side request forgenes
Amazon EC2
Squid proxy sesver

Amazon EC)
Workers

Amazon $3
Content storage

F N —— —

Amazon EC2 /) Apache Solr

(replaated In twoAvmlmZoncsy

Amazen EC2 [Regis(rephcatad intwoAvallobiity Zone;

\
Amazon LC2/ MySAL (replicated ntwo Avaiebilty Zoneswith
master-master replEion batwaen NRANces)

Lsy Slack architecture on AWS

systems with multiple independent actors.

]

threads nodes
in a multithreaded program. in a distributed system.

other
services

7~
_ -)I
7~
e — A
web / api :___ —
-

severs |ew—— | database

—— ——

concurrent actors

th reads —P user-space or system threads

th reads —P user-space or system threads

var tasks []Task

func main() {

for { _,——”""II’

if len(tasks) > 0 {
task := dequeue(tasks) - @

process(task)

I
O
(W)

multiple threads:

// Shared variable
var tasks []Task

func worker() {

for len(tasks) > 0 { <4+

task := dequeue(tasks) g
process(task)

}
¥

func main() {

// Spawn fixed-pool of worker threads.
startWorkers(3, worker)

// Populate task queue.

for _, t := range hellaTasks {
tasks = append(tasks, t)

I3

’ data race

"when two+ threads concurrently access a shared
memory location, at least one access is a write.”

...many threads provides concurrency,
may introduce data races.

nhodes — orocesses i.e. logical nodes
(but term can also refer to machines i.e.

pohysical nodes).

communicate by message-passing i.e.
connected by unreliable network,

no shared memory.

are sequential.

no global clock.

distributed key-value store.
three nodes with master and two replicas.

cart: | |

usery usery

ADD apple crepe ADD blueberry crepe

\/

cart: [apple crepe,
blueberry crepe]

distributed key-value store.

three nodes with three equal replicas.
read_quorum = write_quorum = 1.
eventually consistent.

cart: | |

uSerx usery
ADD apple crepe ADD blueberry crepe

cart: [apple crepe] °
° @ cart: [blueberry crepe |

...multiple nodes accepting writes
orovides availability,
may introduce conflicts.

given we want
concurrent systems,
we need to deal with
data races,
conflict resolution.

riak:
distributed
key-value store

channels:

Go concurrency primitive

stepping back:
similarity,
meta-lessons

riak
a distributed datastore

* Distributed key-value database:
// A data 1item = <key: blob>
{“uuid1234”: {“name”:"”ada”}}

* v1.0releasedin 2011.
Based on Amazon’s Dynamo.

» Eventually consistent:
uses optimistic replication i.e.
replicas can temporarily diverge, AP system
will eventually converge. (CAP theorem)

* Highly available:
data partitioned and replicated,
decentralized,
sloppy quorum.

cart: | |

ADD apple crepe ADD blueberry crepe

cart: [apple crepe]\‘

conflict
resolution

cart: [blueberry crepe |

cart: [apple crepe]

UPDATE to date crepe

causal updates

cart: [date crepe |

how do we determine
causal vs. concurrent
updates?

A: apple
usery B: blueberry

usery {cart:[B]} ST D: date

{cart:[A]]} {cart:[A]} {cart:[D [}

\A 3 /’C 5

concurrent events?

concurrent events”?

A, C:
not concurrent — same sequential actor

A, C:
not concurrent — same sequential actor
C, D:
not concurrent — fetch/ update pair

happens-before

orders events across actors. X <Y IF one of:

(threads or nodes)

— same actor
— are a synchronization pair

Formulated in Lamport’s —A<E<Y
Time, Clocks, and the T
Ordering of Events paper
in 1978.
IF X not<Yand VY not< X,
establishes causality and concurrent!

concurrency.

causality

A < C (same actor)
C < D (synchronization pair)
So, A < D (transitivity)

causality and concurrency

N
N>
N3
..butB?D
D?B

So, B, D concurrent!

{cart:[A]}

{cart:[B]}
{cart:[A]} {cart:[D [}

£
/C D

A<D
D should update A

B, D concurrent
B, D need resolution

how do we implement
happens-before?

vector clocks

means to establish happens-before edges.

n1 n2 n3

vector clocks

means to establish happens-before edges.

n1 n2 n3

N1

Ny N3 N1 N2 N3 N1 N2 n3
0] 0] o
11 0] o 0] o | 1"

vector clocks

means to establish happens-before edges.

n1 n2 n3
N1 Ny N3 N1 N2 N3 N1 N2 n3
0 [ofo]|][o]o]o f[o]o]fo
1 [o] o o [o]| 1Y
2 [0| o

vector clocks

means to establish happens-before edges.

n1 n2 n3
N1 N2 N3 N2 N1 N2 n3
0 [0] o o0 [o] o
1 [0] o o [o]| 1Y
2 | o0 | o max ((2, 0, 0),

~~~~~~~ (0,1, 0))



vector clocks

means to establish happens-before edges.

n1 n2 n3
N1 N2 N3 N2 N1 N2 n3
0 [ 0] o o0 [ o] o
1 [ 0] o o [ o ]| 1Y
2 [ o | o max ((2, 0, 0),

~~~~~~~ (0,1, 0))

happens-before comparison: X <Y iff VCx < VCy

So, B, D concurrent

causality tracking in riak

Riak stores a vector clock with each version of the data.

a more precise form,

"dotted version vector”

GET, PUT operations on a key pass around a casual context object,

that contains the vector clocks.

ni n2

causality tracking in riak

Riak stores a vector clock with each version of the data.

a more precise form,

"dotted version vector”

GET, PUT operations on a key pass around a casual context object,

that contains the vector clocks.

Therefore, able to detect conflicts.

o E

...what about resolving those conflicts?

conflict resolution in riak

Behavior is configurable.

Assuming vector clock analysis enabled:

e |last-write-wins

i.e. version with higher timestamp picked.
* merge, iff the underlying data type is a CRDT
* return conflicting versions to application

riak stores “siblings” or conflicting versions,

returned to application for resolution.

return conflicting versions to application:

Riak stores both versions

B: { cart: [“blueberry crepe”]} o | o | 1
D: { cart: [“date crepe”]} 2 | 1] o

next op returns both to application

application must resolve conflict

" 11

{ cart: ["blueberry crepe”, “"date crepe” | }

which creates a causal update

{ cart: ["blueberry crepe”, “date crepe” 1} [2 T 1 T 1]

...what about resolving those conflicts?

et

doesn’t
(default behavior).

instead, exposes happens-before graph
to the application for conflict resolution.

riak:

uses
vector clocks
to track causality and conflicts.

exposes
happens-before graph
to the user for conftlict resolution.

channels
Go concurrency primitive

multiple threads:

// Shared variable
var tasks []Task

func worker() {

for len(tasks) > 0 { <4+

task := dequeue(tasks) g
process(task)

}
¥

func main() {

// Spawn fixed-pool of worker threads.
startWorkers(3, worker)

// Populate task queue.

for _, t := range hellaTasks {
tasks = append(tasks, t)

I3

’ data race

"when two+ threads concurrently access a shared
memory location, at least one access is a write.”

memory model

specifies when an event happens before another.

X x=1
Y print(x)

X <Y IF one of:

— same thread

— are a synchronization pair = unlock/ lock on a mutex,

~X<E<Y send / recv on a channel,
spawn/ first event of a thread.

IF X not<YandYnot< X,
etc.

concurrent!

goroutines

The unit of concurrent execution: goroutines
O user-space threads

O use as you would threads
> g0 handle request(r)

O Go memory model specified in terms of goroutines

P within a goroutine: reads + writes are ordered
p with multiple goroutines: shared data must be
synchronized...else data races!

synchronization

The synchronization primitives are:

O mutexes, conditional vars, ...
> import “sync”
> mu.Lock()

O atomics
> import “sync/ atomic”
> atomic.AddUint64 (&myInt, 1)

O channels

channels

Do not communicate by sharing memory;
instead, share memory by communicating.”

O standard type in Go — chan
safe for concurrent use.

O mechanism for goroutines to communicate, and synchronize.

O Conceptually similar to Unix pipes:

> ch := make(chan int) // Initialize

> go func() { ch <=1 } () // Send
> <—-ch // Receive, blocks until sent.

// Shared variable

var tasks []Task want:
func worker() { .
for len(tasks) > 0 { <= worker:
task := dequeue(tasks) * get a task.
process(task) « brocess it
, .
I3 * repeat.

func main() {

// Spawn fixed-pool of workers. L
startWorkers(3, worker) give tasks to workers.

main:

// Populate task queue.

for _, t := range hellaTasks {
tasks = append(tasks, t)

I3

}

var taskCh = make(chan Task, n)

func main() { func worker() A{
// Spawn fixed-pool of workers. for {
startWorkers(3, worker) // Get a task.
t := <-taskCh
// Populate task queue. process(t)
for _, t := range hellaTasks {
taskCh <- t
} I3
I3

mutex?

// Shared variable
mu var tasks []Task

func worker() {

for len(tasks) > 0 { mu
task := dequeue(tasks)
process(task)

}
¥

func main() {

// Spawn fixed-pool of workers.
startWorkers(3, worker)

// Populate task queue.

for _, t := range hellaTasks A1
mu tasks = append(tasks, t)
s

L

...but workers can exit early.

want: channel semantics

(as used):

main: main

worker
* send tasks

I wait for task

worker: send task
* wait for task \
* process It recv task
* repeat
process

l

send task to happen before worker runs.

...channels allow us to express
happens-before constraints.

channels:

allow, and force, the user
to express
happens-before
constraints.

stepping back...

similarities

surface happens-before to the user

riak: channels:
distributed Go
key-value store concurrency primitive

first principle:
happens-before

meta-lessons

new technologies
cleverly decompose
INto
old ideas

the “right” boundaries
for abstractions
are flexible.

<

happens-before

riak channels

[T T 1 _,D]:l_,

@kavya719

https://speakerdeck.com/kavya7/19/what-came-first

https://speakerdeck.com/kavya719/what-came-first

riak: a note (or two)...

nodes in Riak:
> virtual nodes (“vnodes”)
> key-space partitioning by consistent hashing,1 vnode per partition.

> sequential because Erlang processes, use message queues.

replicas:
> N, R, W, etc. configurable by key.

> on network partition, defaults to sloppy quorum w/ hinted-handofft.

conflict-resolution:

> by read-repair, active anti-entropy.

riak: dotted version vectors

problem with standard vector clocks: false concurrency.

userX: PUT “cart™:"A" {} —> (1, 0); “"A"
userY: PUT Hcart":”B”’ {} _> (21 O); [IIAII, IIBII]
userx: PUT ”(:art”:”C"I {(1 I O); IIAII} _> (1 I O) !< (ZI O) _> (3’ O); [IIAIII IIBII’ IICII]

This is false concurrency; leads to “sibling explosion”.

dotted version vectors

fine-grained mechanism to detect causal updates.

decompose each vector clock into its set of discrete events, so:
userX: PUT “cart™:"A" {} —> (1, 0); “A”

userY: PUT “cart”:"B”, {} —> (2, 0); [(1, 0)->"A" (2, 0)->"B"]

userX: PUT “cart”:"C" {} —> (3, 0); [(2, 0)->"B” (3, 0)->"C"]

riak: CRDTs

Conflict-free / Convergent / Commutative Replicated Data Type

> data structure with property:

replicas can be updated concurrently without coordination, and

it's mathematically possible to always resolve conflicts.

> two types: op-based (commutative) and state-based (convergent).

> examples: G-Set (Grow-Only Set), G-Counter, PN-Counter

> Riak DT is state-based CRDTs.

channels: implementation

ch := make(chan int, 3)

ring buffer
waiting senders el
waiting receivers nil

mutex

hchan

ch <- t4

<—Cch

ch <- t4

=

nil

nil

—

nil

nil

<—Cch

1. send happens-before corresponding receive

// Shared variable

var count = 0
var ch = make(chan bool, 1

func setCount() {
count++

ch <- true \\\‘
} (m) €

func printCount() {
<— ch
print(count) <= e D
; B<C
So A<D

go setCount()
go printCount()

2. nt" receive on a channel of size C happens-before
n+C®" send completes.

var maxOutstanding = 3
var taskCh = make(chan int, maxOutstanding)

func worker() {

for {
t := <—taskCh
processAndStore(t)
I3

}

func main() {
go worker()

tasks := generateHellaTasks()

for _, t := range tasks {
taskCh <- t

I3

}

1. send happens-before corresponding receive.

It channel empty:
receiver goroutine paused;
resumed after a channel send occurs.

It channel not empty:
receiver gets first unreceived element

i.e. buffer is a FIFO queue.

Sends must have completed due to mutex.

2. nt" receive on a channel of size C happens-before
n+C®" send completes.

“2nd receive happens-before 5th send.”

il

send #3 can occur.

send #4 can occur after receive #1.
send #5 can occur after receive #2.

Fixed-size, circular buffer.

2. nt" receive on a channel of size C happens-before
n+C®" send completes.

If channel full:
sender goroutine paused,;
resumed after a channel recv occurs.

If channel not empty:
receiver gets first unreceived element
i.e. buffer is a FIFO queue.

Send of that element must have completed due to
channel mutex

