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 Slack architecture on AWS



systems with multiple independent actors.

nodes 
in a distributed system.

threads 
in a multithreaded program.

concurrent actors



user-space or system threadsthreads



R

W

R

W

func main() { 
for { 

if len(tasks) > 0 { 
task := dequeue(tasks) 
process(task) 

} 
} 

}

user-space or system threadsthreads
var tasks []Task



multiple threads:
// Shared variable 
var tasks []Task

func worker() { 
for len(tasks) > 0 { 

task := dequeue(tasks) 
process(task) 

} 
}

func main() { 
// Spawn fixed-pool of worker threads. 
startWorkers(3, worker) 

// Populate task queue. 
for _, t := range hellaTasks { 
   tasks = append(tasks, t) 
} 

}

R

W
R

W
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“when two+ threads concurrently access a shared 
memory location, at least one access is a write.” 

data race



…many threads provides concurrency, 
may introduce data races.



nodes processes i.e. logical nodes 
(but term can also refer to machines i.e. 
physical nodes). 

communicate by message-passing i.e. 
connected by unreliable network,  
no shared memory. 

are sequential. 

no global clock.



distributed key-value store. 
three nodes with master and two replicas.

M

R R

cart: [ apple crepe, 
           blueberry crepe ]

cart: [ ]

ADD apple crepe 
userX

ADD blueberry crepe 
userY



distributed key-value store. 
three nodes with three equal replicas. 
read_quorum = write_quorum = 1. 
eventually consistent.

cart: [ ]

N2 N3

N1cart: [ apple crepe ]

ADD apple crepe 
userX

cart: [ blueberry crepe ]

ADD blueberry crepe 
userY



…multiple nodes accepting writes  
provides availability, 

may introduce conflicts.



given we want  
concurrent systems, 
we need to deal with  

data races, 
conflict resolution. 



riak: 
distributed  

key-value store

channels: 
Go concurrency primitive

stepping back: 
similarity, 

meta-lessons



riak 
a distributed datastore



riak
• Distributed key-value database: 
// A data item = <key: blob> 
{“uuid1234”: {“name”:”ada”}} 

• v1.0 released in 2011. 
Based on Amazon’s Dynamo. 

• Eventually consistent: 
uses optimistic replication i.e.  
replicas can temporarily diverge,  
will eventually converge. 

• Highly available: 
data partitioned and replicated,  
decentralized, 
sloppy quorum.

] AP system  
(CAP theorem)



cart: [ ]

N2 N3

N1cart: [ apple crepe ]

cart: [ blueberry crepe ]

ADD apple crepe ADD blueberry crepe 

cart: [ apple crepe ]

N2 N3

N1

cart: [ date crepe ]

UPDATE to date crepe   

conflict  
resolution

causal updates



how do we determine 
causal vs. concurrent 

updates?



{ cart : [ A ] } 

N1

N2

N3

userY

{ cart : [ B ] } userX

{ cart : [ A ]} 
userX

{ cart : [ D ]} 

A B
C D

concurrent events?

A: apple  
B: blueberry 
D: date



N1

N2

N3

A B
C D

concurrent events?



A B
C D

N1

N2

N3

A, C:  
not concurrent — same sequential actor 



A B
C D

N1

N2

N3

A, C:  
not concurrent — same sequential actor 

C, D:  
not concurrent — fetch/ update pair



happens-before
X ≺ Y IF one of:  

— same actor 
— are a synchronization pair 
— X ≺ E ≺ Y

across actors.

IF X  not ≺ Y and Y not ≺ X , 
concurrent! 

orders events

Formulated in Lamport’s  
Time, Clocks, and the 
Ordering of Events paper 
in 1978. 

establishes causality and 
concurrency.

(threads or nodes)



      A ≺ C (same actor) 
      C ≺ D (synchronization pair) 
So, A ≺ D (transitivity)

causality and concurrency

A B
C D

N1

N2

N3



…but B ? D 
           D ? B 
           So, B, D concurrent!

A B
C D

N1

N2

N3

causality and concurrency



A B
C D

N1

N2

N3

{ cart : [ A ] } 
{ cart : [ B ] } 

{ cart : [ A ]} { cart : [ D ]} 

A ≺ D 
D should update A 

     
B, D concurrent 

B, D need resolution



how do we implement 
happens-before?



0 0 1

0 0 0

n1 n2 n3

0 0 0 0 0 0

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.

1 0 0



0 0 0

n1 n2 n3

0 0 0

1 0 0

2 0 0

0 0 0

0 0 1

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.



0 0 0

n1 n2 n3

0 0 0

1 0 0

2 0 0

0 0 0

0 0 1

0 1 0

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.



0 0 0

2 1 0

n1 n2 n3

0 0 0

1 0 0

2 0 0

0 0 0

0 0 1

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.

max ((2, 0, 0), 
(0, 1, 0))



0 0 0

2 1 0

n1 n2 n3

0 0 0

1 0 0

2 0 0

0 0 0

0 0 1

n1 n2 n3 n1 n2 n3

n1 n2 n3

vector clocks
means to establish happens-before edges.

max ((2, 0, 0), 
(0, 1, 0))

happens-before comparison: X ≺ Y iff VCx < VCy



A B
C D

N1

N2

N3

1 0 0

0 0 1

2 0 0

2 0 0

2 1 0

1 0 0

1 0 0

2 1 0

So, A ≺ D

VC at D:
VC at A: 



A B
C D

N1

N2

N3

1 0 0

0 0 1

2 0 0

2 0 0

2 1 0

1 0 0

0 0 1

2 1 0VC at D:
VC at B: 

So, B, D concurrent



causality tracking in riak

GET, PUT operations on a key pass around a casual context object, 
that contains the vector clocks. 

Therefore, able to detect conflicts.

a more precise form, 
“dotted version vector”

Riak stores a vector clock with each version of the data.

2 1 0

2 0 0

n1 n2

max ((2, 0, 0), 
(0, 1, 0))



…what about resolving those conflicts?

causality tracking in riak

GET, PUT operations on a key pass around a casual context object, 
that contains the vector clocks. 

a more precise form, 
“dotted version vector”

Riak stores a vector clock with each version of the data.

Therefore, able to detect conflicts.



conflict resolution in riak
Behavior is configurable. 
Assuming vector clock analysis enabled: 

• last-write-wins  
i.e. version with higher timestamp picked. 

• merge, iff the underlying data type is a CRDT 

• return conflicting versions to application  
riak stores “siblings” or conflicting versions, 
returned to application for resolution. 



return conflicting versions to application:

0 0 1

2 1 0D: { cart: [ “date crepe” ] }
B: { cart: [ “blueberry crepe” ] }
Riak stores both versions

next op returns both to application

application must resolve conflict

{ cart: [ “blueberry crepe”, “date crepe” ] }

2 1 1

which creates a causal update 
{ cart: [ “blueberry crepe”, “date crepe” ] }



…what about resolving those conflicts?

doesn’t  
(default behavior). 

instead, exposes happens-before graph  
to the application for conflict resolution.



 riak: 
  

uses  
vector clocks  

to track causality and conflicts. 

exposes  
happens-before graph 

to the user for conflict resolution.



channels 
Go concurrency primitive



R

W
R

W

g2g1multiple threads:
// Shared variable 
var tasks []Task

func worker() { 
for len(tasks) > 0 { 

task := dequeue(tasks) 
process(task) 

} 
}

func main() { 
// Spawn fixed-pool of worker threads. 
startWorkers(3, worker) 

// Populate task queue. 
for _, t := range hellaTasks { 
   tasks = append(tasks, t) 
} 

}

“when two+ threads concurrently access a shared 
memory location, at least one access is a write.” 

data race



specifies when an event happens before another.

memory model

          X ≺ Y IF one of:  

— same thread 
— are a synchronization pair 
— X ≺ E ≺ Y

IF X  not ≺ Y and Y not ≺ X , 
concurrent! 

x = 1 
print(x)

X
Y

unlock/ lock on a mutex, 
send / recv on a channel, 

spawn/ first event of a thread. 
etc.



 The unit of concurrent execution: goroutines 

 user-space threads 

 use as you would threads  
    > go handle_request(r) 

 Go memory model specified in terms of goroutines  
 within a goroutine: reads + writes are ordered 
 with multiple goroutines: shared data must be 
synchronized…else data races!

goroutines



The synchronization primitives are: 

 mutexes, conditional vars, … 
     > import “sync”  
  > mu.Lock() 

  atomics 
     > import “sync/ atomic"  
  > atomic.AddUint64(&myInt, 1) 

  channels

synchronization



“Do not communicate by sharing memory;  
 instead, share memory by communicating.” 

 standard type in Go — chan 
  safe for concurrent use. 

 mechanism for goroutines to communicate, and synchronize. 

 Conceptually similar to Unix pipes:  
 
     > ch := make(chan int) // Initialize 
  > go func() { ch <- 1 } () // Send 
  > <-ch // Receive, blocks until sent. 

channels



// Shared variable 
var tasks []Task

func worker() { 
for len(tasks) > 0 { 

task := dequeue(tasks) 
process(task) 

} 
}

func main() { 
// Spawn fixed-pool of workers. 
startWorkers(3, worker) 

// Populate task queue. 
for _, t := range hellaTasks { 
   tasks = append(tasks, t) 
} 

}

want:

main: 
* give tasks to workers.

worker: 
* get a task. 
* process it. 
* repeat.



var taskCh = make(chan Task, n) 
var resultCh = make(chan Result)

func worker() { 
for { 

// Get a task. 
t := <-taskCh 
process(t) 
// Send the result. 
resultCh <- r 

} 
}

func main() { 
// Spawn fixed-pool of workers. 
startWorkers(3, worker) 

// Populate task queue. 
for _, t := range hellaTasks { 
   taskCh <- t 
} 

// Wait for and amalgamate results. 
var results []Result 
for r := range resultCh { 

results = append(results, r) 
} 

}



// Shared variable 
var tasks []Task

func worker() { 
for len(tasks) > 0 { 

task := dequeue(tasks) 
process(task) 

} 
}

func main() { 
// Spawn fixed-pool of workers. 
startWorkers(3, worker) 

// Populate task queue. 
for _, t := range hellaTasks { 
   tasks = append(tasks, t) 
} 

}

]

]

mu

mu

] mu

…but workers can exit early.

mutex?



want:

worker: 
* wait for task 
* process it 
* repeat

main: 
* send tasks

main
worker

send task 
wait for task

process

recv task

channel semantics 
(as used):

send task to happen before worker runs.

…channels allow us to express  
happens-before constraints.



 channels: 
  

allow, and force, the user  
to express 

happens-before  
constraints. 



stepping back…



first principle: 
happens-before

riak: 
distributed  

key-value store

channels: 
Go  

concurrency primitive

surface happens-before to the user

similarities 



meta-lessons



new technologies  
cleverly decompose  

into  
old ideas



the “right” boundaries  
for abstractions  

are flexible.
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≺
happens-before

riak channels

https://speakerdeck.com/kavya719/what-came-first

https://speakerdeck.com/kavya719/what-came-first


nodes in Riak: 
> virtual nodes (“vnodes”) 
> key-space partitioning by consistent hashing,1 vnode per partition. 
> sequential because Erlang processes, use message queues.  

replicas: 
> N, R, W, etc. configurable by key. 
> on network partition, defaults to sloppy quorum w/ hinted-handoff. 

conflict-resolution: 
> by read-repair, active anti-entropy.

riak: a note (or two)…



riak: dotted version vectors
problem with standard vector clocks: false concurrency. 
 
userX: PUT “cart”:”A”, {} —> (1, 0); “A” 
userY: PUT “cart”:”B”, {} —> (2, 0); [“A”, “B”] 
userX: PUT “cart”:”C”, {(1, 0); “A”} —> (1, 0) !< (2, 0) —> (3, 0); [“A”, “B”, “C”] 
This is false concurrency; leads to “sibling explosion”. 
 
dotted version vectors 

fine-grained mechanism to detect causal updates. 
decompose each vector clock into its set of discrete events, so:  
userX: PUT “cart”:”A”, {} —> (1, 0); “A” 
userY: PUT “cart”:”B”, {} —> (2, 0); [(1, 0)->”A”, (2, 0)->”B”] 
userX: PUT “cart”:”C”, {} —> (3, 0); [(2, 0)->”B”, (3, 0)->”C”]



riak: CRDTs
Conflict-free / Convergent / Commutative Replicated Data Type 

> data structure with property:  
replicas can be updated concurrently without coordination, and  
it’s mathematically possible to always resolve conflicts. 
 
> two types: op-based (commutative) and state-based (convergent). 
 
> examples: G-Set (Grow-Only Set), G-Counter, PN-Counter  
 
> Riak DT is state-based CRDTs.



ch := make(chan int, 3)

channels: implementation

nil

nil

 buf

sendq

recvq

lock

...

waiting senders

waiting receivers

ring buffer 

mutex

hchan



ch <- t1

g1

ch <- t4

ch <- t2

ch <- t3

nil
nil

nil

 buf

sendq

recvq

lock

g1

 buf

sendq

recvq

lock



ch <- t1

g1

 buf

sendq

recvq

lock

g1
nil

<-ch

g2



 buf

sendq

recvq

lock

nil
nil

<-ch

g2

g1



 buf

sendq

recvq

lock

nil
nil

<-ch

g2g1

ch <- t4
 buf

sendq

recvq

lock

nil
nil



A

B

C

D

W

send

R

g1 g2

recv

// Shared variable 
var count = 0 
var ch = make(chan bool, 1)

func setCount() { 
count++ 
ch <- true 

}

func printCount() { 
<- ch 
print(count) 

}

go setCount() 
go printCount() 

B ≺ C 
So, A ≺ D  

1. send happens-before corresponding receive



2. nth receive on a channel of size C happens-before  
n+Cth send completes. 

var maxOutstanding = 3 
var taskCh = make(chan int, maxOutstanding) 

func worker() { 
for { 

t := <-taskCh 
processAndStore(t) 

} 
} 

func main() { 
go worker() 

tasks := generateHellaTasks() 
for _, t := range tasks { 

taskCh <- t 
} 

}



If channel empty: 
receiver goroutine paused; 
resumed after a channel send occurs. 
 
If channel not empty: 
receiver gets first unreceived element 
i.e. buffer is a FIFO queue. 

Sends must have completed due to mutex.

1. send happens-before corresponding receive.



“2nd receive happens-before 5th send.” 

 

2. nth receive on a channel of size C happens-before  
n+Cth send completes. 

send #3 can occur.
send #4 can occur after receive #1. 
send #5 can occur after receive #2. 

Fixed-size, circular buffer. 



2. nth receive on a channel of size C happens-before  
n+Cth send completes. 

If channel full: 
sender goroutine paused; 
resumed after a channel recv occurs. 
 
If channel not empty: 
receiver gets first unreceived element 
i.e. buffer is a FIFO queue. 

Send of that element must have completed due to  
channel mutex


