

ML Data Pipelines for Real-Time Fraud Prevention

Mikhail Kourjanski, Principal Architect

QCON New York, June 2018

Service with Velocity and Scale

~60 Billion Queries/day

Braintree

Facts and numbers:

- PayPal in more than 200 countries and regions.
- Secure Payments: \$451 Billion global transaction volume in 2017
- Significant incoming fraud pressure
- Sophistication of the modern day hacker attacks: distributed; high-velocity
- Compliance and Privacy:
 AML, Prevention of prohibited activities, KYC, PII protection

Risk Decisioning is a Competitive Advantage for PayPal

Key Differentiating Capabilities

- User Experience is based on trust
- Block fraud...
- ...with low False Positives (don't block good folks!)
- Buyer and Seller Protections
- Full customer financial data not shared with merchants
- Regulatory Compliance => Customer Safety

Story-based data analytics

Top-notch data sciences practice

UX

Risk Big Data (100 of 150 PB)

Our homegrown E2E platform

To busines

Crohxy

Use Cases: ML for Fraud Prevention

Fraud has many different forms

Illustrative scenarios (including, but not limited to...)

Stolen accounts

- Existing account with linked financial instruments and balance is taken over
- Change of shipping address and contact info (email, phone)
- > Attempts to purchase expensive goods; or transfer money out (e.g. P2P send money)

Identity fraud

- Account opening under stolen identity
- Credit risks
- Usage in a chain of account to account transfers in attempt to exit stolen money
- High velocity in attempting to open multiple accounts linked in some way (e.g. from same IP)
- > Or, "grooming" of the account to build positive history later to be used in a burst of bad activity

Collusion

- Fraudulent Merchant account along with multiple fraudulent consumer accounts
- ➤ Using stolen credit cards to "pay for goods" actually funneling out stolen money via Merchant

Carrying Risk of Transactions: Decisions at Checkpoints

Each payment transaction is a customer's story

Enroll -Manage via Explore Resolve **Transact** Self-Service **New Acct** Reporting, and Analytics - Research > Purchase ➤ Complaints <Buyer, Seller> ➤ Behaviour ➤ Do we know ➤ Login / Auth you? ➤ Chargebacks ➤ Offers > Transfer > Wallet ➤ Validations ➤ Recover NSF ➤ Send Money ➤ Guest > Profile checkout > Credit Risk ➤ Investigations > Withdrawal Velocity

Linked Objects & Activities

What Data Do We Process?

Types of data affect choice of modeling methods and frameworks

Enroll -Manage via Explore Resolve **Transact** Self-Service **New Acct** Structured data... Numbers Dates • Strings • Geo, ... Features ... + Unstructured data Voice - IVR • Text – emails, customer interaction records ChatBot *Images* Social media

ML Models – Inferencing in Production Ecosystem

Model Composition Model sequencing and selection Model 1 Model 2 Model 3 or Model 4

- ➤ Multiple models at checkpoint (Acct Takeover; Card Auth; Linkage...)
- > Analysis of models' performance (sample group; champion-challenger...)

Model Development Process and Roles

Infra Engineers

Elastic Intelligent Infrastructure: GPU, TPU; large RAM

Production Platform: Real-Time Inference At Scale

Three Velocities of the Data Flows

Where to execute ML models (Inference) – in #A, or #B, or #C?

A Story of a Payment: Serving Decisions at Checkpoints

Decisioning flow

Y/N, or Action Decision for a Checkpoint ~75% calls at < 50ms; deep inspections can take longer

Decisioning Platform

Fail-Open or Fail-Close? – ask Biz & Compliance

The Anatomy of Decisioning

Decisioning flow

©2018 PayPal Inc. Confidential and proprietary.

14

Model Integration Pattern

ML inferencing

Requirements

- > Framework agnostic
- Support complex co-existing model portfolio: Ensembles, Cascades
- Automated model version deployment w/o production stack downtime
- Reuse of the model deployment pattern across RT / NRT / Offline-analytical
- Unified data access componentized; supports Production and Simulations

Challenges

- Manage execution digraph & config
- Dynamic updates / zero downtime
- Efficiency of data loads

Model Repository and Deployment

Supporting agile lifecycle for the models in production

latency,...)

Lifecycle status

NFR parameters (sizing,

How to Manage Data?

17

Data Tier

Types of data stores

Features from DW historical data

Features from Events

New data -stream into DW

Data Stores

Real-time ODS

ORACLE

∢EROSPIKE

Near-Real Time Streaming; Big Data NoSQL

Enterprise Data Warehouse

- ~1% data volume (1PB):
 - Service contexts
 - Events history (near-term)
 - Precomputed features from offline and Events/Near-RT
- Need Big Raw Data in NRT for Deep Learning
- > Considerations:
 - Key space
 - Read or Write optimized?

- ~99+% data volume
 - Historical raw data (available as Point-in-Time)
 - Features

Cloud Appeal, but Beware of Compliance, Privacy.

Data Management Discipline

FinTech Rigor for Compliance, Security and Privacy

- Know your data:
 - Raw data
 - Features with lineage to raw data
 - Models (and rules)

Challenges

- ☐ Data Quality; Lineage
- ☐ Privacy & PII
- Multi-data-center
 - Eventual consistency
 - Geo-distribution and locality

Conclusion

Takeaways

- Modeling: Review business performance of DL vs simpler models
- ➤ <u>Model deployment</u>: Choose Real-time vs Near-RT vs Offline
- Data: Have a data store strategy with clearly defined data processing flows, and know your data
- ➤ <u>Infrastructure:</u> Analyze ROI for GPU inferencing (unlike training)
- DevOps: Automated deployment & config mgmt
- > Architecture:
 - Framework / product agnostic
 - Modular separating Compute from Data Access

To be continued....

Thank You!

Mikhail Kourjanski *Principal Architect*

Email: mkourjanski@paypal.com

Linkedin: https://www.linkedin.com/in/mikhail-kourjanski-79358/

©2018 PayPal Inc. Confidential and proprietary.