
API Design Lessons Learned:
Enterprise to Startup
Mohamed El-Geish
g@workfit.io

2

4 This presentation may
contain content that
contradicts how your
company designs APIs

4 Startups are nimble and
daring; don’t try this at
home work (or do try it)!

4 YMMV

WARNING

E N T E R P R I S E 	 V O I C E 	 A I

WHAT	ARE	WE	BUILDING?

CAPABILITIES

Automatic
Dial-in

Takes Interactive
Commands

Transcribes
Key Highlights

Indexed and
Searchable
Meetings

Interactive
Meeting

Dashboard

Interactive
Word Cloud

Share Meeting
Highlights

Highlight
Reel

Meeting
Recap Email

4

LET’S TALK API DESIGN

6

WHY API DESIGN
MATTERS?

7

BECAUSE BAD API DESIGN IS COSTLY!

8

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Project	1

Project 2

Project	3

Project	4

Project 5

Project	6

Task	1 Task	2 Task	3 Task	4

TIMELINE WHEN API DESIGN IS GOOD

9

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Project	1

Project 2

Project	3

Project	4

Project 5

Project	6

Task	1 Task	2 Task	3 Task	4

TIMELINE WHEN API DESIGN IS BAD

EXAMPLE: A TALE OF TWO QUEUES

10

// We used to use a FIFO SQS queue to send messages:
request, _ := q.SendMessageRequest(&sqs.SendMessageInput{

QueueUrl: aws.String(queueURL),
MessageBody: aws.String(messageBody),
MessageGroupId: aws.String(groupID),
MessageDeduplicationId: aws.String(dedupeID),

})
return request.Send()

// Then we switched that code to use a standard (non-FIFO) queue.
// Expectation: The API clearly denotes a FIFO-specific interface.

EXAMPLE: A TALE OF TWO QUEUES

11

// Reality: latent errors due to ambiguous API overloading;
// we can’t use the last two arguments for standard queues!
// This parameter applies only to FIFO (first-in-first-out) queues.
// ... [many lines later] ...
// MessageGroupId is required for FIFO queues.
// You can't use it for Standard queues.

// One way to mitigate this is to create a FIFO-specific API:
request, _ := q.SendFIFOMessageRequest(&sqs.SendFIFOMessageInput{

MessageGroupId: aws.String(groupID),
MessageDeduplicationId: aws.String(dedupeID),

...

12

LESSON 0: IMITATE THE GREAT (LEARN)

PERCEPTUAL LEARNING

• Study: Non-pilots did better than
experienced pilots; PL works for other
complex fields.*

• Cognitive Science: PL accelerates gaining
expertise via pattern recognition.**

• SMDMTM: See one many; do one many;
teach one many — we require many high-
quality examples for high SNR.***

13

14

1 Ample time and resources

2 Scrutinized processes and reviews

3 Access to a ton of code and designs

4 Formal coaching and training

5 Abundance of talent and expertise

BIG COMPANIES = GREAT FOR LEARNING

15

LEARNING AS A TENET

THE WORKFIT WAY

4Humans are the most important
factor in the success of
software.

4We learn to make new mistakes.

4We invest in learning and
coaching: long-term ROI.

4Accelerated learning =>
high iteration velocity.

LEARNING TO DO
DOING TO LEARN

16

LET’S TALK CODE

EXAMPLE: PACKAGE MUST

18

// We noticed a pattern when declaring main package variables
// We also noticed a pattern in Go’s standard library:
// MustCompile is like Compile but panics if the expression cannot be
// parsed. It simplifies safe initialization of global variables holding
// compiled regular expressions.
func MustCompile(str string) *Regexp {
regexp, error := Compile(str)
if error != nil {

panic(`regexp: Compile(` + quote(str) + `): ` + error.Error())
}
return regexp

}

EXAMPLE: PACKAGE MUST

19

// So we imitated the same pattern into package must:
// CreateMeetingsClient wraps fabric.NewMeetingsClient
// with default parameters.
func CreateMeetingsClient() fabric.MeetingsClient {

client, err := fabric.NewMeetingsClient(
context.TODO(), fabric.DefaultClientConfig)

if err != nil {
reportPanic(err)

}
return client

}

var meetingsClient = must.CreateMeetingsClient() // how it’s called

ANOTHER EXAMPLE: PACKAGE ERRORS

20

// Visual Studio TFS errors have IDs to reference them in docs*;
// free-form errors are hard to map into a single TSG/failure mode;
// our errors package allows for consistency, reuse, strong contracts,
// brevity, testability, error handling hooks, and localizability.

const wf11200 = `WF11200: HTTP response status code was not 2xx`

// WF11200 occurs when an HTTP response has a status code other than 2xx.
func WF11200(response interface{}) error {

log.Error(wf11200, "response", response)
return newError(wf11200)

}

21

LESSON 1: FIND
YOUR NORTH STAR

22

“As to the methods there may be a million
and then some, but principles are few. The
man who grasps principles can successfully
select his own methods. The man who tries

methods, ignoring principles, is sure to
have trouble.”

RALPH WALDO EMERSON

WHAT? WHY? HOW?

• A north star guides your decision-making
processes including API design choices.

• In ever-changing environments, one can
get lost and distracted by myopic goals.

• Align design goals with business goals;
we don’t design in a vacuum.

• Find your treasure and guard it well.

23

KEY CHALLENGES STARTUPS
& NEW PROJECTS FACE

• A blank canvas: an overwhelming number of
decisions to make -> decision fatigue.

• Velocity is life; grow fast or die slow:
“If a software company grows at [20%
annually], it has a 92 percent chance of
ceasing to exist within a few years.”*

• Security: it’s inconvenient; it’s everyone’s
responsibility; and it can slow us down.

24

25

SETTING GOALS & GUIDING PRINCIPLES

4Scope: short- vs. long- term.

4Agreeing on guiding principles ->
a decision-making framework ->
conflict-resolution mechanism.

4We strive to foster wisdom and
autonomy.

THE WORKFIT WAY

GOALS AND GUIDING PRINCIPLES

• Short-term: security, correctness, iteration velocity, availability,
performance, throughput, scalability, and maintainability.

• Long-term: security, correctness, availability, throughput, performance,
scalability, maintainability, and iteration velocity.

• Balance: Design with scalability and maintainability in mind; trade off only
when necessary.

• Methods: encryption, ACLs, cyber hygiene, CI, testing, SOA, A/B testing,
tracking and telemetry, KISS, etc.

26

SHORT-TERM GUIDING PRINCIPLES IN ACTION

• Data Formats: Binary or textual?

• Contracts: Whether or not to enforce schemas?

• Programming Languages: Why Go, C++, Python, and Java?

• Investing in CI: Travis, Docker, and DC/OS.

• Rich Logging: verbose and structured; multi-engine; and secure.

27

EXAMPLE: LIFECYCLE OF A MICROSERVICE

28

5
Scale on
DC/OS

4
Productionize
(Go & Docker)

3
Test the

hypothesis

2
Deploy to

AWS (EC2)

1
Prototype in

any language

LET’S TALK MORE ABOUT CHALLENGES

• Latent conflict of priorities: Go is great but it had its issues (e.g. ICS parser).

• Building for scale: balancing TTM with future projections of scalability.

• Susceptibility to tribal knowledge syndrome: how to share knowledge & move fast?
e.g., log.Error(wf11200, "response", response) // what’s "response"?

• Many choices: green-field projects with high degrees of freedom; e.g., we moved
from Kubernetes to DC/OS because of:
– Better support of security and stateful solutions
– Stability (on AWS)
– GPU Time-sharing

29

30

LESSON	2:	DESIGN	FOR	HUMANS

LEARN ABOUT ALL SORTS OF
DESIGN

• Good API design qualities transcend
code.

• Industrial design cares about interfacing
with a physical product.

• User-centered design focuses on
usability.

• Many analogies to draw among all sorts
of design.

31

TEN PRINCIPLES OF GOOD DESIGN BY DIETER RAMS

32

1 Good Design Is Innovative

2 Good Design Is Useful

3 Good Design Is Aesthetic

4 Good Design Is Understandable

5 Good Design Is Unobtrusive

6 Good Design Is Honest

7 Good Design Is Long-lasting

8 Good Design Is Thorough

9 Good Design Is Eco-friendly

10 Good Design Is Minimal

PUT THE HUMAN FIRST!

33

If the human gets it,
things will work quicker & better

Good API design is about
communicating well to humans

34

“Let us change our traditional attitude to
the construction of programs: Instead of

imagining that our main task is to instruct
a computer what to do, let us concentrate

rather on explaining to human beings what
we want a computer to do.”

DONALD KNUTH

EXAMPLE: PACKAGE ASSERT

35

// Java projects at LinkedIn are tested using TestNG, JUnit, & AssertJ:
org.testng.Assert.assertEquals(x, y) // actual, expected
org.junit.Assert.assertEquals(x, y) // expected, actual -> cognitive load
Assertions.assertThat(x).isEqualTo(y); // better

// Package assert* allows for easy & consist UT+DDT and test hook checks
if !assert.For(t).ThatActual(x).Equals(y).Passed() {

analyze(x, y)
}
assert.For(t).ThatActual(x).Equals(expected).ThenRunOnFail(analyze)
assert.For(t).ThatActual(x).Equals(expected).ThenDiffOnFail()
assert.For(t).ThatCalling(someFunc).PanicsReporting("error")

EXAMPLE: PACKAGE ASSERT

36

// Plays well with table-driven tests:
cases := []struct {

id string
actual interface{}
expected interface{}

}{
{"different values", 42, 13},
// ...

}
for _, c := range cases {

assert.For(t, c.id).ThatActual(c.actual).Equals(c.expected)
} // prints test case ID in failure messages

EXAMPLE: PACKAGE ASSERT

37

// At Microsoft, we used the internal access modifier and friend
// assemblies for testability; at LinkedIn we used package-private
// methods and documented that they are @VisibleForTesting; at Workfit,
// using tags, instead of comments, enables us to check test hooks:
type sleeper struct {

sleep func(time.Duration) `test-hook:"verify-unexported"`
}

// What gets exposed for testability shall not be exported!
func TestHooksAreHidden(t *testing.T) {

assert.For(t).ThatType(reflect.TypeOf(sleeper{})).HidesTestHooks()
}

ANOTHER EXAMPLE: API DESIGN PROCESS

38

Reiterate

5

Implement

4

Write
Client
Code

3

Solicit
&

Discuss
Feedback

2

Spec

1

FINALLY

TAKEAWAYS: 3x3

40

LEARNING NORTH STAR PEOPLE FIRST

• See

• Do

• Teach

• Goals

• Tenets

• Methods

• Accelerate

• Communicate

• Empathize

E N T E R P R I S E 	 V O I C E 	 A I

WE’RE	HIRING

@elgeish

g@workfit.io

www.elgeish.com

linkedin.com/in/elgeish

CONTACT INFO

42

