API| Design Lessons Learned:
Enterprise to Startup

Mohamed El-Geish
g@workfit.io

SVQ | W

» This presentation may
contain content that
contradicts how your
company designs APIs

+ Startups are nimble and
daring; don't try this at
hoeme work (or do try it)!

- YMMV

e \/ Q WWorkfit

WHAT ARE WE BUILDING?

RPRISE VOICE Al

eVQ CAPABILITIES

(7 °

Al

j&
al‘

) g
Automatic Takes Interactive Transcribes Indexed and Interactive
Dial-in Commands Key Highlights Searchable Meeting
Meetings Dashboard
()
© @ =@
|
1
Interactive Share Meeting Highlight Meeting
Word Cloud Highlights Reel Recap Email

SVQ | Workt

LET'S TALK API DESIGN

BAD API DESIGN IS COSTLY

BECAUSE

TIMELINE WHEN API DESIGN IS GOOD

Project 1

Project 2

Project 3

Project 4 N |

Project 5 |

Project 6 I

. Task 1

TIMELINE WHEN API DESIGN IS BAD

Project 1

Project 2

Project 3

Project 4

Project 5

Project 6

. Task 1

Task 4

EXAMPLE: A TALE OF TWO QUEUES

// We used to use a FIFO SQS queue to send messages:
request, _ := g.SendMessageRequest(&sqgs.SendMessageInput{
QueueUrl: aws.String(queueURL),
MessageBody: aws.String(messageBody),
MessageGroupld: aws.String(grouplD),
MessageDeduplicationId: aws.String(dedupelD),
})

return request.Send()

// Then we switched that code to use a standard (non-FIFO) queue.
// Expectation: The API clearly denotes a FIFO-specific interface.

EXAMPLE: A TALE OF TWO QUEUES

// Reality: latent errors due to ambiguous API overloading;
// we can’t use the last two arguments for standard queues!
applies only

can't use it

// One way to mitigate this is to create a FIFO-specific API:
request, _ := g.SendFIFOMessageRequest(&sqgs.SendFIFOMessageInput{
MessageGroupld: aws.String(groupID),
MessageDeduplicationId: aws.String(dedupelD),

il =

e

T

T

//

12

PERCEPTUAL LEARNING

« Study: Non-pilots did better than
experienced pilots; PL works for other
complex fields.*

« Cognitive Science: PL accelerates gaining
expertise via pattern recognition.**

« SMDMTM: See ere many, do ere many;,
teach enre many — we require many high-
quality examples for high SNR.***

A workfit

BIG COMPANIES = GREAT FOR LEARNING

Ample time and resources

Scrutinized processes and reviews

Access to a ton of code and designs
Formal coaching and training

Abundance of talent and expertise

-
THE WORKFIT WAY

‘f_ LEARNING AS A TENET

» Humans are the most important
factor in the success of
o software.

» We learn to make new mistakes.

» We invest in learning and
coaching: long-term ROI.

» Accelerated learning =>
high iteration velocity.

15

LEARNING TO DO
DOING TO LEARN

SVQ | Workt

LET'S TALK CODE

EXAMPLE: PACKAGE MUST

// We noticed a pattern when declaring main package variables
// We also noticed a pattern in Go’s standard library:

MustCompile(str) *Regexp {
regexp, error := Compile(str)

1= nil {

panic(regexp: Compile(+ quote(str) +):

regexp

EXAMPLE: PACKAGE MUST

// So we imitated the same pattern into package must:

CreateMeetingsClient() fabric.MeetingsClient {
client, err := fabric.NewMeetingsClient(
context.TODO(), fabric.DefaultClientConfig)
if err I= {
reportPanic(err)

¥

return client

meetingsClient = must.CreateMeetingsClient() // how it’s called

ANOTHER EXAMPLE: PACKAGE ERRORS

// Visual Studio TFS errors have IDs to reference them in docs";

// free-form errors are hard to map into a single TSG/failure mode;

// our errors package allows for consistency, reuse, strong contracts,
// brevity, testability, error handling hooks, and localizability.

wfl1200 = WF11200: HTTP response status code was not 2xx°
WF11200(response {}) {

log.Error(wfl11200, "response", response)
return newError(wf11200)

“As to the methods there may be a million
and then some, but principles are few. 1 he
man who grasps principles can successtully
select his own methods. 'I'he man who tries

methods, ignoring principles, is sure to
have trouble.”

RALPH WALDO EMERSON

22 A workfit

WHAT? WHY? HOW?

A north star guides your decision-making
processes including APl design choices.

* |n ever-changing environments, one can
get lost and distracted by myopic goals.

* Align design goals with business goals;
we don't design in a vacuum.

 Find your treasure and guard it well.

KEY CHALLENGES STARTUPS
&NEW PROJECTS FACE

« A blank canvas: an overwhelming number of
decisions to make -> decision fatigue.

* Velocity is life; grow fast or die slow:
“If a software company grows at [20%
annually], it has a 92 percent chance of
ceasing to exist within a few years."*

« Security: it's inconvenient; it's everyone’s
responsibility; and it can slow us down.

25

THE WORKFIT WAY

SETTING GOALS & GUIDING PRINCIPLES

» Scope: short- vs. long- term.

» Agreeing on guiding principles ->
a decision-making framework ->
conflict-resolution mechanism.

» We strive to foster wisdom and
autonomy.

GOALS AND GUIDING PRINCIPLES

 Short-term: security, correctness, iteration velocity, availability,
performance, throughput, scalability, and maintainability.

« Long-term: security, correctness, availability, throughput, performance,
scalability, maintainability, and iteration velocity.

 Balance: Design with scalability and maintainability in mind; trade off only
when necessary.

« Methods: encryption, ACLSs, cyber hygiene, Cl, testing, SOA, A/B testing,
tracking and telemetry, KISS, etc.

A workfit

SHORT-TERM GUIDING PRINCIPLES IN ACTION

« Data Formats: Binary or textual?

Contracts: Whether or not to enforce schemas?

Programming Languages: Why Go, C++, Python, and Java?

Investing in CI: Travis, Docker, and DC/OS.

Rich Logging: verbose and structured; multi-engine; and secure.

EXAMPLE: LIFECYCLE OF A MICROSERVICE

Prototype in Deploy to Test the Productionize Scale on
any language AWS (EC2) hypothesis (Go & Docker) DC/0S

A workfit

LET'S TALK MORE ABOUT CHALLENGES

« Latent conflict of priorities: Go is great but it had its issues (e.g. ICS parser).
« Building for scale: balancing TTM with future projections of scalability.

 Susceptibility to tribal knowledge syndrome: how to share knowledge & move fast?
e.g., log.Error(wfl11200, "response", response) // what’s "response"?

« Many choices: green-field projects with high degrees of freedom; e.g., we moved
from Kubernetes to DC/OS because of:

— Better support of security and stateful solutions
— Stability (on AWS)
— GPU Time-sharing

LESSON 2: DESIGN FOR HUMANS
30 Aworkfit

LEARN ABOUT ALL SORTS OF
DESIGN

- Sy
P 7 -

1N
i
e
-
-
o
-
o
»
w
{
14

« Good API design qualities transcend
code.

* Industrial design cares about interfacing
with a physical product.

« User-centered design focuses on
usability.

« Many analogies to draw among all sorts
of design.

31

TEN PRINCIPLES OF GOOD DESIGN BY DIETER RAMS

H Good Design Is Honest

Good Design Is Long-lasting

n Good Design Is Thorough

Good Design Is Understandable Good Design Is Eco-friendly

Good Design Is Minimal

32 A workfit

Good Design Is Innovative
Good Design Is Useful

Good Design Is Aesthetic

Good Design Is Unobtrusive

PUT THE HUMAN FIRST!

® ©®

Good API design is about If the human gets it,
communicating well to humans things will work quicker & better

A workfit

“Let us change our traditional attitude to
the construction of programs: Instead of
imagining that our main task is to instruct
a computer what to do, let us concentrate
rather on explaining to human beings what
we want a computer to do.”

DONALD KNUTH

34 A workfit

EXAMPLE: PACKAGE ASSERT

// Java projects at LinkedIn are tested using TestNG, JUnit, & Assert]:
org.testng.Assert.assertEquals(x, y) // actual, expected
org.junit.Assert.assertEquals(x, y) // expected, actual -> cognitive load
Assertions.assertThat(x).isEqualTo(y); // better

// Package assert” allows for easy & consist UT+DDT and test hook checks
if lassert.For(t).ThatActual(x).Equals(y).Passed() {

analyze(x, y)
}
assert.For(t).ThatActual(x).Equals(expected).ThenRunOnFail(analyze)
assert.For(t).ThatActual(x).Equals(expected).ThenDiffOnFail()
assert.For(t).ThatCalling(someFunc).PanicsReporting(“error")

EXAMPLE: PACKAGE ASSERT

// Plays well with table-driven tests:
cases := [] {

id

actual {}

expected {}

H
{"different values", 42, 13},

¥

for _, C€ := range cases {
assert.For(t, c.id).ThatActual(c.actual).Equals(c.expected)
} // prints test case ID in failure messages

EXAMPLE: PACKAGE ASSERT

At Microsoft, we used the internal access modifier and friend
assemblies for testability; at LinkedIn we used package-private

methods and documented that they are @VisibleForTesting; at Workfit,

using tags, instead of comments, enables us to check test hooks:
sleeper {

sleep (time.Duration) " test-hook:"verify-unexported""

What gets exposed for testability shall not be exported!
TestHooksAreHidden(t *testing.T) {

assert.For(t).ThatType(reflect.TypeOf(sleeper{})).HidesTestHooks()

ANOTHER EXAMPLE: APl DESIGN PROCESS

Solicit
&

Discuss ° Relterate
Feedback

SVQ | Workt

FINALLY

TAKEAWAYS: 3x3

e See e (Goals Accelerate

e DO e Tenets e Communicate

e Teach » Methods « Empathize

e \/ O WWorkfit

WE’RE HIRING

RPRISE VOICE Al

~
=z
&)
=
&
S~
=
£
Qo
=
=
i,
Q
X
=

www.elgeish.com

CONTACT INFO
@elgeish
g@workfit.io

