
A Series Of Unfortunate Container Events

Netflix’s container platform lessons learned

About the speakers and team

Follow along - @sargun @tomaszbak_ca @fabiokung

@aspyker @amit_joshee @anwleung
2

Netflix’s container management platform

● Titus

● Scheduling
○ Service & batch jobs
○ Resource management

● Container Execution
○ Docker/AWS Integration
○ Netflix Infra Support

Service

Job Management

Resource Management & Optimization

Container Execution
Integration

Batch

3

Containers In
Production

4

Current Titus scale

● Deployed across multiple AWS accounts & three regions
● Over 5,000 instances (Mostly M4.4xls & R3.8xls)
● Over a week period launched over 1,000,000 containers
● Over 10,000 containers running concurrently

5

Single cloud platform for VMs and containers

● CI/CD (Spinnaker)
● Telemetry systems
● Discovery and RPC load balancing
● Healthcheck, Edda and system metrics
● Chaos monkey
● Traffic control (Flow & Kong)
● Netflix secure secret management
● Interactive access (ala ssh)

6

Integrate containers with AWS EC2

● VPC Connectivity (IP per container)
● Security Groups
● EC2 Metadata service
● IAM Roles
● Multi-tenant isolation (cpu, memory, disk quota, network)
● Live and S3 persisted logs rotation & mgmt
● Environmental context to similar to user data
● Autoscaling service jobs (coming)

7

● Service
○ Stream Processing (Flink)
○ UI Services (NodeJS)
○ Internal dashboards

● Batch
○ Personalization ML model training (GPUs)
○ Content value analysis
○ Digital watermarking
○ Ad hoc reporting
○ Continuous integration builds
○ Media encoding experimentation

Container users on Titus

Archer

8

Titus high level overview

9

RheaRheaTitus API

Cassandra

Titus Scheduler

● Job Lifecycle Control
● Resource Management

EC2 Autoscaling

Fenzo

9

container
container

container

docker

Titus Agents

Mesos agent

Docker

Docker Registry

containercontainerUser Containers

AWS Virtual Machines

Mesos

Titus System AgentsWorkflow
Systems

9

Look away, look away, Look away, look away
This session will wreck your evening​, your whole life, and your day

Every single episode is nothing but dismay
So, look away, Look away, look away

Lessons learned from a year in production?

10

Expect
Bad Actors

11

Run-away submissions

Submit a job, check status

If API doesn’t answer
assume 404 and re-submit

Problem:

User

12

Worked for our content processing job of 100 containers
Let’s run our “back-fill” -- 100s of thousands of containers

Problems
● Scheduler runs out of memory
● All other jobs get queued behind

Solutions
● Scheduler capacity groups
● Absolute caps on number of concurrent live jobs
● Upstream systems doing ingest control

System perceived as infinite queue

User

13

Uses REST/JSON poorly
{ env: { “PATH” : null } }

Problems
● Scheduler crashes, fails over, crashes, repeat

Solutions
● Input validation, input fuzz testing, exception handling

Invalid Jobs

User

14

Failing jobs that repeat

Image: “org/imagename:lateest”
Command: /bin/besh -c ...

Problems
● Containers can launch FAST! Can be restarted FAST!
● Scheduler works really hard
● Cloud resources allocated/deallocated FAST

Solutions
● Rate limiting of failing jobs

User

15

Problems
● Scheduler fails, can’t recover due to “bad” jobs

Solutions

Manual removal of bad job state? ✖ Test production data sets in staging

✔

Testing for “bad” job data

16

1. Export job data

2. Restore job data
3. Test recovery

4. Deploy new code

PROD
STAGING

PROD

Identifying bad actors

V2 API
● user (optional)

V2 Auditing
● Added collection of user

performing action

V3 API
● Owner -> teamEmail (required)

17

● User Namespaces
○ Docker 1.10 - User Namespaces (Feb 2016)
○ Docker 1.11 - Fixed shared networking NSs

■ User id mapping is per daemon (not per container)
○ Deployed user namespaces recently

■ Problems - shared NFS, OSX LDAP uid/gid’s
● Locked Down hosts

○ Users only have access to containers, not hosts
○ Required “power user” ssh access for perf/debugging

Really bad actors - container escapes protections

18

The Cloud Isn’t Perfect
19

Cloud rate limiting and overall limits

Let’s do a red/black deploy of 2000 containers instantly

Problems
● Scheduler and distributed host fleet ... no problem!
● Cloud provider … problem!

Solutions
● Exponential backoff with jitter on hosts
● Setting expectations of maximum concurrent launches
● Rate limiting of container scheduling and overall number of containers

User

20

Hosts start or go bad

Problems
● Hosts come up with flakey networks
● Host disks come up and are slow
● Hosts go bad over time

Solutions
● Scheduler must be aware

of host health checks
● Linux, storage, etc warming
● Auto-termination if hosts take too

long to become healthy

21

Upgrades - In place upgrades

● Simpler for container users
● Infrastructure becomes mutable
● Doesn’t leverage elastic cloud
● How to handle rollback?

Docker V1

Titus Agents V1

Mesos V1

Batch Container #1

Service Container #2

Docker V2

Titus Agents V2

Mesos V2

Batch Container #1

Service Container #2

Agent Agent with updates

✖
✖

✖

22

Upgrades - Whole cluster red/black

● Full red/black takes hours
● Costly (duplicate clusters)
● Insufficient Capacity Exception (ICE)
● Rollback requires ALL containers to move twice

✖

23

Upgrades - Partitioned cluster updates

● Requires complex scheduler knowledge
○ Batch jobs to have runtime limits
○ Service jobs with Spinnaker migration tasks

● Starting point for fleet cluster management

Docker V1

Titus Agents V1

Mesos V1

Batch Container #1

Service Container #2

Docker V2

Titus Agents V2

Mesos V2

Service Container #2

Let “drain”

old

new

✖

✖

✖

24

CI/CD
Task
Migration

Our Code Isn’t Perfect
25

Disconnected containers

Problem
● Host agent controllers lock up
● Control plane can’t kill replaced containers

User
● Why is my old code still running?

Solutions
● Monitor and alert on differences
● Reconcile to this system as

aggressively as possible Container

Scheduler

I’m running

You shouldn’t be!

Agent

Stop Container

×
×

Locked
Up

26

Scheduler failover speed is important

27

StandBy

C*

save

Active

C*

restore

Scheduler failover time increased
with scale

● Loss of API availability
● Reconciliation bugs caused task

crashes

Solutions:

● Data sharding (current vs old tasks)
● Do as little as possible during startup

Active Active✖

Know your dependencies

28

Agent

DNSS3Zookeeper

Problems
● Container creation errors
● Logs upload failure
● Task crashes

Solutions
● Retries
● Rate limiting
● Isolation

● Containers start with Docker .. end with the kernel

● Best container runtimes deeply leverage kernel primitives
○ Resource Isolation
○ Security
○ Networking etc

● Debugging tools (tracepoints, perf events) not container aware
○ Need for BPF, Kprobe

Containers require kernel knowledge

29

Problems
● Our instances fail
● Our code fails
● Our dependencies fail

Solutions
● Learn to love the Chaos Monkey
● Enabled for prod and all

services (even our scheduler)

Strategy: Embrace chaos

30

Alerting and dashboards key

Very complex system == very complex telemetry and alerting

Continuously evolving
● Based on real incidents and resulting deep analysis

Telemetry system Number

Metrics 100’s

Dashboard Graphs 70+

Alerts 50+

Elastic Search Indexes 4

31

Temporary ad hoc remediation

● Manual babysitting of scheduler state

● Pin high when auto-scaling and
capacity management isn’t work

● Automated for each ssh across all nodes
○ Detecting and remediating problems

32

What has worked well?
33

Solid software

Docker Distribution

● Our Docker registry
● Simple redirect on top of S3

Apache Mesos

● Extensible resource manager
● Highly reliable replicated log

Zookeeper

● Leader Election
● Isolated

Cassandra

● CDE Internal Service
● Careful of access model

34

Managing the Titus product

Focus on core business value
● Container cluster management

Features are important
● Deciding what not to do …

Just as important!

Deliberately chose NOT to do
● Service Discovery / RPC
● Continuous Delivery
 35

Ops enablement
Phase 1: Manual red/black deploys

Phase 2: Runbook for on-call

Phase 3: Automated pipelines

Deploy New ASG Find Current
Leader

Terminate Non
Leader Nodes

Terminate Current
Leader

36

Problem

● If you aren’t measuring, you don’t know
● If you don’t know, you can’t improve

Solutions

● Our SLOs
○ Start Latency
○ % Crashed
○ API Availability

● Once we started watching, we started improving

Service Level Objectives (SLOs)

37

Onboarding slowly
38

Documenting container readiness

● Broken down by type of application and feature set
● Readiness expressed in

○ Alpha (early users), beta (subject to change), GA (mass adoption)
39

Growing usage slowly, carefully

Titus Created
Batch GA

4Q 2015
Service Support

Added
1Q 2016

First Scale
Production Service

4Q 2016
Netflix Customer
Facing Service

2Q 2017

40

shadow

Key takeaways

● Expect problematic containers & workloads
● Continued need for cloud to evolve for containers
● Container schedulers, runtime are complex
● Ops enablement key for production systems
● Users need help adopting containers responsibly

● Worth the effort due to value containers unlock
41

Questions?

42

Backup

Titus High Level Overview

44

Titus UITitus UI

RheaRheaTitus API

Titus UI

Cassandra

Titus Master

Job Management &
Scheduler

Zookeeper

EC2
Auto-scaling API

Mesos Master

Fenzo

44

Docker
Registry
Docker
Registry

container
container

container

docker

Titus Agent metrics agents

Titus executor

logging agent

btrfs

Mesos agent

Docker

S3
Docker
Registry

container

Pod & VPC network
drivers

containercontainer

AWS
metadata proxy

Integration

 AWS VMs

