
A Series Of Unfortunate Container Events

Netflix’s container platform lessons learned



About the speakers and team

Follow along - @sargun @tomaszbak_ca @fabiokung 

@aspyker @amit_joshee @anwleung
2



Netflix’s container management platform

● Titus

● Scheduling
○ Service & batch jobs
○ Resource management

● Container Execution
○ Docker/AWS Integration
○ Netflix Infra Support

Service

Job Management

Resource Management & Optimization

Container Execution
Integration

Batch
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Containers In
Production
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Current Titus scale

● Deployed across multiple AWS accounts & three regions
● Over 5,000 instances (Mostly M4.4xls & R3.8xls)
● Over a week period launched over 1,000,000 containers
● Over 10,000 containers running concurrently
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Single cloud platform for VMs and containers

● CI/CD (Spinnaker)
● Telemetry systems
● Discovery and RPC load balancing
● Healthcheck, Edda and system metrics
● Chaos monkey
● Traffic control (Flow & Kong)
● Netflix secure secret management
● Interactive access (ala ssh)
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Integrate containers with AWS EC2

● VPC Connectivity (IP per container)
● Security Groups
● EC2 Metadata service
● IAM Roles
● Multi-tenant isolation (cpu, memory, disk quota, network)
● Live and S3 persisted logs rotation & mgmt
● Environmental context to similar to user data
● Autoscaling service jobs (coming)
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● Service
○ Stream Processing (Flink)
○ UI Services (NodeJS)
○ Internal dashboards

● Batch
○ Personalization ML model training (GPUs)
○ Content value analysis
○ Digital watermarking
○ Ad hoc reporting
○ Continuous integration builds
○ Media encoding experimentation

Container users on Titus

Archer
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Titus high level overview
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RheaRheaTitus API

Cassandra

Titus Scheduler

● Job Lifecycle Control
● Resource Management

EC2 Autoscaling

Fenzo
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container
container

container

docker

Titus Agents

Mesos agent

Docker

Docker Registry

containercontainerUser Containers

AWS Virtual Machines

Mesos

Titus System AgentsWorkflow
Systems
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Look away, look away, Look away, look away
This session will wreck your evening​, your whole life, and your day

Every single episode is nothing but dismay
So, look away, Look away, look away

Lessons learned from a year in production?
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Expect
Bad Actors
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Run-away submissions

Submit a job, check status

If API doesn’t answer
assume 404 and re-submit

Problem:

User
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Worked for our content processing job of 100 containers
Let’s run our “back-fill” -- 100s of thousands of containers

Problems
● Scheduler runs out of memory
● All other jobs get queued behind

Solutions
● Scheduler capacity groups
● Absolute caps on number of concurrent live jobs
● Upstream systems doing ingest control

System perceived as infinite queue

User
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Uses REST/JSON poorly
{ env: { “PATH” : null } }

Problems
● Scheduler crashes, fails over, crashes, repeat

Solutions
● Input validation, input fuzz testing, exception handling

Invalid Jobs

User
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Failing jobs that repeat

Image: “org/imagename:lateest”
Command: /bin/besh -c ...

Problems
● Containers can launch FAST! Can be restarted FAST!
● Scheduler works really hard
● Cloud resources allocated/deallocated FAST

Solutions
● Rate limiting of failing jobs

User
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Problems
● Scheduler fails, can’t recover due to “bad” jobs

Solutions

Manual removal of bad job state? ✖       Test production data sets in staging 

✔

Testing for “bad” job data
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1. Export job data

2. Restore job data
3. Test recovery

4. Deploy new code

PROD
STAGING

PROD



Identifying bad actors

V2 API
● user (optional)

V2 Auditing
● Added collection of user 

performing action

V3 API
● Owner -> teamEmail (required)
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● User Namespaces
○ Docker 1.10 - User Namespaces (Feb 2016)
○ Docker 1.11 - Fixed shared networking NSs

■ User id mapping is per daemon (not per container)
○ Deployed user namespaces recently

■ Problems - shared NFS, OSX LDAP uid/gid’s
● Locked Down hosts

○ Users only have access to containers, not hosts
○ Required “power user” ssh access for perf/debugging

Really bad actors - container escapes protections
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The Cloud Isn’t Perfect
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Cloud rate limiting and overall limits

Let’s do a red/black deploy of 2000 containers instantly

Problems
● Scheduler and distributed host fleet ... no problem!
● Cloud provider … problem!

Solutions
● Exponential backoff with jitter on hosts
● Setting expectations of maximum concurrent launches
● Rate limiting of container scheduling and overall number of containers

User
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Hosts start or go bad

Problems
● Hosts come up with flakey networks
● Host disks come up and are slow
● Hosts go bad over time

Solutions
● Scheduler must be aware

of host health checks
● Linux, storage, etc warming
● Auto-termination if hosts take too

long to become healthy
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Upgrades - In place upgrades

● Simpler for container users
● Infrastructure becomes mutable
● Doesn’t leverage elastic cloud
● How to handle rollback?

Docker V1

Titus Agents V1

Mesos V1

Batch Container #1

Service Container #2

Docker V2

Titus Agents V2

Mesos V2

Batch Container #1

Service Container #2

Agent Agent with updates

✖
✖

✖
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Upgrades - Whole cluster red/black

● Full red/black takes hours
● Costly (duplicate clusters)
● Insufficient Capacity Exception (ICE)
● Rollback requires ALL containers to move twice

✖
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Upgrades - Partitioned cluster updates

● Requires complex scheduler knowledge
○ Batch jobs to have runtime limits
○ Service jobs with Spinnaker migration tasks

● Starting point for fleet cluster management

Docker V1

Titus Agents V1

Mesos V1

Batch Container #1

Service Container #2

Docker V2

Titus Agents V2

Mesos V2

Service Container #2

Let “drain”

old

new

✖

✖

✖
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CI/CD
Task 
Migration



Our Code Isn’t Perfect
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Disconnected containers

Problem
● Host agent controllers lock up
● Control plane can’t kill replaced containers

User
● Why is my old code still running?

Solutions
● Monitor and alert on differences
● Reconcile to this system as

aggressively as possible Container

Scheduler

I’m running

You shouldn’t be!

Agent

Stop Container

×
×

Locked
Up
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Scheduler failover speed is important
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StandBy

C*

save

Active

C*

restore

Scheduler failover time increased 
with scale

● Loss of API availability
● Reconciliation bugs caused task 

crashes

Solutions:

● Data sharding (current vs old tasks)
● Do as little as possible during startup

Active Active✖



Know your dependencies
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Agent

DNSS3Zookeeper

Problems
● Container creation errors
● Logs upload failure
● Task crashes

Solutions
● Retries
● Rate limiting
● Isolation



● Containers start with Docker .. end with the kernel

● Best container runtimes deeply leverage kernel primitives
○ Resource Isolation
○ Security
○ Networking etc

● Debugging tools (tracepoints, perf events) not container aware
○ Need for BPF, Kprobe

Containers require kernel knowledge
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Problems
● Our instances fail
● Our code fails
● Our dependencies fail

Solutions
● Learn to love the Chaos Monkey
● Enabled for prod and all

services (even our scheduler)

Strategy: Embrace chaos
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Alerting and dashboards key

Very complex system == very complex telemetry and alerting

Continuously evolving
● Based on real incidents and resulting deep analysis

Telemetry system Number

Metrics 100’s

Dashboard Graphs 70+

Alerts 50+

Elastic Search Indexes 4
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Temporary ad hoc remediation

● Manual babysitting of scheduler state

● Pin high when auto-scaling and
capacity management isn’t work

● Automated for each ssh across all nodes
○ Detecting and remediating problems
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What has worked well?
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Solid software

Docker Distribution

● Our Docker registry
● Simple redirect on top of S3

Apache Mesos

● Extensible resource manager
● Highly reliable replicated log

Zookeeper

● Leader Election
● Isolated

Cassandra

● CDE Internal Service
● Careful of access model
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Managing the Titus product

Focus on core business value
● Container cluster management

Features are important
● Deciding what not to do …

Just as important!

Deliberately chose NOT to do
● Service Discovery / RPC
● Continuous Delivery
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Ops enablement
Phase 1: Manual red/black deploys

Phase 2: Runbook for on-call

Phase 3: Automated pipelines

Deploy New ASG Find Current 
Leader

Terminate Non 
Leader Nodes

Terminate Current 
Leader
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Problem

● If you aren’t measuring, you don’t know
● If you don’t know, you can’t improve

Solutions

● Our SLOs
○ Start Latency
○ % Crashed
○ API Availability

● Once we started watching, we started improving

Service Level Objectives (SLOs)
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Onboarding slowly
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Documenting container readiness

● Broken down by type of application and feature set
● Readiness expressed in

○ Alpha (early users), beta (subject to change), GA (mass adoption)
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Growing usage slowly, carefully

Titus Created
Batch GA

 

4Q 2015
Service Support

Added
1Q 2016

First Scale 
Production Service

4Q 2016
Netflix Customer
Facing Service

2Q 2017
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Key takeaways

● Expect problematic containers & workloads
● Continued need for cloud to evolve for containers
● Container schedulers, runtime are complex
● Ops enablement key for production systems
● Users need help adopting containers responsibly

● Worth the effort due to value containers unlock
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Questions?
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Backup



Titus High Level Overview
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Titus UITitus UI

RheaRheaTitus API

Titus UI

Cassandra

Titus Master 

Job Management & 
Scheduler

Zookeeper

EC2 
Auto-scaling API

Mesos Master

Fenzo
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Docker 
Registry
Docker 
Registry

container
container

container

docker

Titus Agent metrics agents

Titus executor

logging agent

btrfs

Mesos agent

Docker

S3
Docker 
Registry

container

Pod & VPC network 
drivers

containercontainer

AWS
metadata proxy

Integration

     AWS VMs


