
Programming for Hostile
Environments
Our adversary: bare metal infrastructure

June 2018

About Me Nathan Goulding, SVP Engineering

~15 years frontline engineer for
infrastructure/cloud and media companies

Currently lead engineering team at Packet

me = n+3

@NathanGoulding / nathan@packet.net

APP

What Packet Does
“serverless”

(still runs on a server)

CONTAINER

HYPERVISOR

SERVERS

We automate bare metal, physical infrastructure

Founded in 2014 by infrastructure geeks

Over 15,000 users

x86 and ARM CPU architectures

16 locations around the world

20 supported operating systems

50,000 installs per month

@NathanGoulding / nathan@packet.net

“DRIVERLESS”

@NathanGoulding / nathan@packet.net

Programming for Hostile Environments

@NathanGoulding / nathan@packet.net

Topics we’ll cover:

Transitioning from monolith (ruby) to microservices (golang)

Turning antipatterns into patterns

Applied best practices

Goals we set for ourselves

Ephemeral nanoservices

@NathanGoulding / nathan@packet.net

Hostility of the Environment

APP

CONTAINER

HYPERVISOR

SERVER

packet.net / @packethost

The Problem, Abstract

REST API

PORTAL

Datacenter #2
Out-of-band

DHCP

Power Control

VPN

Metadata

OS Images

Bare metal racks

IPAM

Datacenter #1

DNS

Out-of-band

DHCP

Power Control

VPN

Metadata

OS Images

Bare metal racks

@NathanGoulding / nathan@packet.net

From monolith to microservices

 API
Internal and

External Services

Client Portal
Device, Project, Billing,

Token Management

SOREN

Sflow Agg
& Analysis

NARWHAL

Physical Switch
Automation

S.O.S

Serial Console
Out of Bound

Access

DOORMAN

Customer
Backend

VPN

MAGNUM IP

Multi-Tenant
IPAM

PB&J

Power and
Boot Control

TINKERBELL

DHCP & iPXE
Server

KANT

EC2 Style
Metadata

OSIE

In Memory
Installation

Environment

PENSIEVE

Forward and
rDNS

@NathanGoulding / nathan@packet.net

Moving to golang

@NathanGoulding / nathan@packet.net

Compiled

Static typing

Very little “magic”

The best of prior programming languages minus the cruft

An emerging pattern

@NathanGoulding / nathan@packet.net

An emerging pattern

Best Practices, in Practice

#1 - gRPC for communication / rpc

#2 - Get your data as close to where you need it as quickly as possible

#3 - Don’t hide code you don’t like

@NathanGoulding / nathan@packet.net

#1 gRPC for communication / rpc

packet.net / @packethost

Handles backoff / retry

Straightforward service definition for request / response

Streaming data and authentication via SSL

Paradigm for dealing with message format changes

#2 Get data close to where it needs to be, quickly

packet.net / @packethost

The network is unreliable, the network is unreliable, the network is unreliable

Speed up access times + experience for everyone

Be careful of “I’ll just request it (remotely) whenever I need it”

#3 Don’t hide code you don’t like

packet.net / @packethost

Don’t use interfaces / providers to hide code you wish didn’t exist

Use drivers / implementations where it counts

Why Does it Matter?

@NathanGoulding / nathan@packet.net

Goal #1: Can we provision in under 60 seconds?

@NathanGoulding / nathan@packet.net

Provisioning Timing Distribution

@NathanGoulding / nathan@packet.net

Provisioning Timeline

@NathanGoulding / nathan@packet.net

@NathanGoulding / nathan@packet.net

Ephemeral Nanoservices

@NathanGoulding / nathan@packet.net

Function Job Nanoservice Microservice Monolith

Ephemeral ✓ ✓ ✓ ✕ ✕

Encapsulated ✓ ✓ ✓ ✓ ✕

Logging ? ✓ ✓ ✓ ✓

Complex tasks ✕ ✓ ✓ ✓ ✓

Monitored ✕ ✕ ✓ ✓ ✓

Nanoservice Use Cases

@NathanGoulding / nathan@packet.net

Services that have complex tasks or functionality to perform, and...

Need to communicate with other services, and...

Need to be kept up and running, but...

Will never be used past their “life”

Analogy: an ephemeral nanoservice is an “instantiation” of a microservice

Goal #2: Can we go a full day without a single
provisioning failure?

@NathanGoulding / nathan@packet.net

@NathanGoulding / nathan@packet.net

What’s next?

#1 - Flexible workflows via directed graphs

#2 - Distributed tracing for service logs

@NathanGoulding / nathan@packet.net

Q&A

(we're hiring)

@NathanGoulding / nathan@packet.net

