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APP

What Packet Does
“serverless”

(still runs on a server)

CONTAINER

HYPERVISOR

SERVERS

We automate bare metal, physical infrastructure

Founded in 2014 by infrastructure geeks

Over 15,000  users

x86 and ARM CPU architectures

16 locations around the world

20 supported operating systems

50,000 installs per month
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“DRIVERLESS”
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Programming for Hostile Environments
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Topics we’ll cover:

Transitioning from monolith (ruby) to microservices (golang)

Turning antipatterns into patterns

Applied best practices

Goals we set for ourselves

Ephemeral nanoservices



@NathanGoulding / nathan@packet.net

Hostility of the Environment
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The Problem, Abstract
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From monolith to microservices
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Moving to golang
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Compiled

Static typing

Very little “magic”

The best of prior programming languages minus the cruft



An emerging pattern
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An emerging pattern



Best Practices, in Practice

#1 - gRPC for communication / rpc

#2 - Get your data as close to where you need it as quickly as possible

#3 - Don’t hide code you don’t like
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#1 gRPC for communication / rpc

packet.net  /  @packethost 

Handles backoff / retry

Straightforward service definition for request / response

Streaming data and authentication via SSL

Paradigm for dealing with message format changes



#2 Get data close to where it needs to be, quickly
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The network is unreliable, the network is unreliable, the network is unreliable

Speed up access times + experience for everyone

Be careful of “I’ll just request it (remotely) whenever I need it”



#3 Don’t hide code you don’t like
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Don’t use interfaces / providers to hide code you wish didn’t exist

Use drivers / implementations where it counts



Why Does it Matter?
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Goal #1: Can we provision in under 60 seconds?
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Provisioning Timing Distribution
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Provisioning Timeline
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Ephemeral Nanoservices
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Function Job Nanoservice Microservice Monolith

Ephemeral ✓ ✓ ✓ ✕ ✕

Encapsulated ✓ ✓ ✓ ✓ ✕

Logging ? ✓ ✓ ✓ ✓

Complex tasks ✕ ✓ ✓ ✓ ✓

Monitored ✕ ✕ ✓ ✓ ✓



Nanoservice Use Cases
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Services that have complex tasks or functionality to perform, and...

Need to communicate with other services, and...

Need to be kept up and running, but...

Will never be used past their “life”

Analogy: an ephemeral nanoservice is an “instantiation” of a microservice



Goal #2: Can we go a full day without a single 
provisioning failure?
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What’s next?

#1 - Flexible workflows via directed graphs

#2 - Distributed tracing for service logs
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Q&A

(we're hiring) 
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