
Nonconformist
Resilience:
Database-backed Job Queues

John Mileham | @jmileham

User Signup
with Email Confirmation

User Signup
with Email Confirmation
A feature so easy we’re still fighting about how to do it in 2017

Requirements:
Validate the user’s profile information

Store the user record to the database

Email a link

When the link is clicked, mark the user as verified

Requirements:
Validate the user’s profile information

Store the user record to the database

Email a link

When the link is clicked, mark the user as verified

Take 1:
Inline the email delivery

Take 1:
Inline the email delivery

… but it’s slow

Take 2:
Spin off a thread or use a thread pool

Take 2:
Spin off a thread or use a thread pool

… but it’s unreliable

Take 3:
Use a grown-up message bus

Take 3:
Use a grown-up message bus

… but it’s unreliable?

Commit-then-Enqueue

Commit
to DB

App Timeline

Enqueue
to bus

Customer Timeline

Deliver
to

ESP

Request Response

Email

Commit
to DB

App Timeline

Enqueue
to bus

Customer Timeline

Deliver
to

ESP

Request Response

Email

Enqueue-then-Commit

Enqueue
to bus

App Timeline

Commit
to DB

Customer Timeline

Deliver
to

ESP

Request Response

Email

Enqueue
to bus

App Timeline

Commit
to DB

Customer Timeline

Deliver
to

ESP

Request

Email

Response

Enqueue
to bus

App Timeline

Commit
to DB

Customer Timeline

Deliver
to

ESP

Request

Email

Build
Email

App Timeline

Response

You could make the enqueue and the database commit atomic via a distributed transaction manager,
but:

● Mature, robust, distributed transaction managers aren’t available for all platforms

● They’re usually proprietary

● Even where they exist, these tools have nuanced configuration, can have operational warts and
are another subsystem that requires care and feeding

● The additional network pings necessary to coordinate the commit between the datastores can
cause write performance problems

Distributed Transactions

Take 4:
Use the database as a queue

Take 4:
Use the database as a queue

… but it won’t scale

Commit
&

Enqueue

App Timeline

Customer Timeline

Deliver
to

ESP

Request Response

Email

Commit
&

Enqueue

App Timeline

Customer Timeline

Deliver
to

ESP

Request Response

Email

Commit
&

Enqueue

App Timeline

Customer Timeline

Deliver
to

ESP

Request Response

Email

Robust By Default

Addressing the pitfalls
Because everything is a tradeoff

DJ: Retry with Exponential Backoff
Two key columns: run_at, and attempts.

● Jobs are picked up oldest first
● Only jobs with a run_at in the past are workable
● When a job fails, a new future run_at is calculated from the previous run_at and number of

previous attempts
● After too many failures (days later), a job will stop being attempted

Message Bus Solution: DLQs
Messages don’t have a desired delivery time in a message bus, so exponential backoff isn’t feasible.

Message delivery will be attempted a preconfigured number of times, and then transferred to a
dead-letter queue, or a cascading set of queues to approximate exponential backoff.

DJ: Priority
Delayed::Job will work off the highest priority first.

Pickup is simply a matter of sorting on priority and then run_at.

We use priority to establish different service level objectives for different kinds of work.

Allows developer not to worry about resourcing their jobs, leaning into DJ.

Allows DJ to fully utilize its worker capacity.

Message Bus Solution: Topics
Message busses can’t as easily support priority.

To assure resource availability for important work, work is shunted to a specific topic or queue with its
own resource pool.

Strong assurance that one job type won’t exhaust resources of another type.

But you must resource each topic individually.

DJ’s got topics too ;)
Even though it’s not the only way to organize work, if you have a mission critical work stream that
must be processed no matter what, you can use a specialized queue to keep its workers separate.

Opt in for as much control as you need, only when you need it.

More Featureful, Not Less

Betterment’s Schema

Users

Deposits
Bank

Accounts

Goals
Investing
Accounts

Auto
Deposits

State-
ments

Betterment’s Schema

Users

Deposits
Bank

Accounts

Goals
Investing
Accounts

Auto
Deposits

State-
ments

Power Law Distribution

The Message Bus Isn’t a Silver Bullet

Coordinated Polling
● Your application chooses a global polling interval, say a half second.
● Every active worker process inserts itself into an active_workers table with a last_active_at

timestamp and maintains it every 30 seconds or so.
● Every few seconds, each worker queries the number of recently active workers.
● It then multiplies the global polling interval by the number of workers and adds random jitter to

prevent thundering herds
● Your app converges on the desired polling interval at arbitrary worker scale

When is a DB-backed
queue the right tool?

1. Should your app use a DB at all?
You should be using an ACID SQL DB if:

● You have a read-heavy usage pattern
● You value agility in supporting new use cases
● You aren’t launching directly into #webscale
● Or even if you are, your app doesn’t exist primarily to solve a graph problem

○ if you’re going big and still want to use SQL, your dataset must inherently shardable

2. Are your clients human?
If clients are interacting with your app like humans, i.e.:

● They do individual operations at a reasonable pace
● The don’t generate batches of 10,000 operations at once

Then you’re looking still looking good.

3. Are Your Bulk Operations Cool?
● Are there relatively few of them?
● Are they customer experience-impacting?
● Are they no more than daily?

All Yes? All Set.

Operating a DB-backed
Queue

Alerting Needs
Two key alerts:

1. Max attempt count
2. Max age

Both metrics are partitioned by job priority.

Max Attempt Count
Total backoff time function: n == 0 ? 0 : n ** 4 + 5 + backoff(n-1)

● First retry in 6 seconds
● Third retry in 2 minutes
● Fifth retry in 16 minutes
● Tenth retry in 7 hours
● Twentieth retry in 8 days

Our thresholds:

● INTERACTIVE errors after 2 attempts (~30 seconds)
● EVENTUAL errors after 8 attempts (~2.5 hours)

Max Age
Age is defined as now() - run_at.

This is your brain
on DJ

(your message
may vary)

Why not just use DJ?

Why not just use DJ?

Date

Author

June 27th, 2017

John Mileham | @jmileham

(is hiring)

