
1

Streaming Microservices: Contracts & Compatibility

Gwen Shapira
Confluent Inc.

2

APIs are contracts
between services

Profile
service

Quote
service

{user_id: 53, address: “2 Elm st”}

{user_id: 53, quote: 580}

3

But not all services
Talk to each other directly

Profile
service

Quote
service

{user_id: 53, address: “2 Elm st.”}

{user_id: 53, quote: 580}

4

And naturally…

Profile
service

Quote
service

Stream
processing

Profile
database

{user_id: 53, address: “2 Elm st.”}

5

… and then you have a streaming platform

Producer Consumer

Streaming Applications

Connectors Connectors
Apache
Kafka

6

Schema are APIs.

7

It isn’t just about the services

Software
engineering Teams &

Culture

Data &
Metadata

8

Lack of Schema can tightly couple teams and services

2001 2001 Citrus Heights-Sunrise Blvd
Citrus_Hghts 60670001 3400293 34 SAC
Sacramento SV Sacramento Valley SAC
Sacramento County APCD SMA8 Sacramento

Metropolitan Area CA 6920 Sacramento 28 6920
13588 7400 Sunrise Blvd 95610 38 41 56
38.6988889 121 16 15.98999977 -121.271111
10 4284781 650345 52

9

Schemas are about how teams work together

Booking
service

{user_id: 53, timestamp: 1497842472}

create table (
use_id number,
timestamp number)

new Date(timestamp)

Attribution
service

Booking
DB

10

Booking
service

{user_id: 53, timestamp: “June 28, 2017 4:00pm”}

Attribution
service

Booking
DB

11

Moving fast and breaking things

Booking
service

{user_id: 53, timestamp: “June 28, 2017 4:00pm”}

create table (
use_id number,
timestamp number)

new Date(timestamp)

Attribution
service

Booking
DB

12

Back in my day… It was never a problem.

13

And then it was.

14

Moving data around
since 1997
Missing my Schema
since 2012.
Apache Kafka PMC

Tweeting a lot
@gwenshap

15

Existing solutions

16

Existing solutions

“It is a communication problem”

“We need to improve our process”

“We need to document everything and get
stakeholder approval”

17

Schema are APIs.
We need specifications
We need to make changes to them
We need to detect breaking changes
We need versions
We need tools

18

Imagine a world
where engineers
can find
the data they need
and use it safely.

Its easy if you try

19

There are benefits to doing this well

Booking
service

Bookings

Profile updates

Room
Gift

service

loyalty
service

Room gift requests

20

Sometimes, magic happens

Booking
service

Profile updates

Room
Gift

service
loyalty
service

Room gift requests

Bookings

New!
Beach
promo

21

… but most days I’m happy if
the data pipelines are humming
and nothing breaks.

22

23

Forward compatibility:

24

Forward & Backward compatibility:

25

Compatibility Rules

Avro JSON

Forward Compatibility Can add fields

Can delete optional fields

(nullable / default)

Can add fields

Backward Compatibility Can delete fields

Can add optional fields

Can delete fields

Full Compatibility Can only modify optional fields Nothing is safe

26

It is confusing. So it is tempting to simplify

“Never change anything”

“Adding fields is ok. Deleting is not”

”Everything is always optional except for the primary key”

27

Enter Schema Registry

28

Schema Registries Everywhere

29

What do Schema Registries do?

1. Store schemas – put/get
2. Link one or more schema to each event
3. Java client that fetches & caches schemas
4. Enforcement of compatibility rules
5. Graphical browser

30

Make those contracts binding

SerializationException

31

Responsibility is slightly distributed

Producer

Serializer

Schema Registry

32

Producers contain Serializers

1. Define the serializers:
props.put("key.serializer", ”org.apache.kafka.serializers.StringSerializer");
props.put("value.serializer", "io.confluent.kafka.serializers.KafkaAvroSerializer");
props.put("schema.registry.url", schemaUrl);
…
producer<String, LogLine> producer = new KafkaProducer<String, LogLine>(props);

2. Create a record:
ProducerRecord<String, LogLine> record =
new ProducerRecord<String, LogLine>(topic, event.getIp().toString(), event);

3. Send the record:
producer.send(record);

33

Serializers cache schemas, register new schema … and serialize

serialize(topic, isKey, object):
subject = getSubjectName(topic, isKey)
schema = getSchema(record)
schemaIdMap = schemaCache.get(subject)
if (schemaIdMap.containsKey(schema):

id = schemaIdMap.get(schema)
else

id = registerAndGetId(subject, schema)
schemaIdMap.put(schema, id)
output = MAGIC_BYTE + id + avroWriter(schema, object)

34

Schema Registry caches schemas and validates compatibility

register(schema, subject):
if (schemaIsNewToSubject):

prevSchema = getPrevSchema(subject)
level = getCompatibilityLevel(subject)
if (level == FULL):

validator =
new SchemaValidatorBuilder().mutualReadStrategy().validateLatest()

if (validator.isCompatible(schema, prevSchema))
register

else
throw

…

35

36

Maven Plugin – because we prefer to catch problems in CI/CD

http://docs.confluent.io/current/schema-registry/docs/maven-plugin.html

• schema-registry:download

• schema-registry:test-compatibility

• schema-registry:register

37

So the flow is…

Dev Nightly build /
merge Prod

Test
Registry

Prod
Registry

Test

Dev or Mock
Registry

38

What if…. I NEED to break compatibility?

Customer_v1

Customer_v2

Translator

39

I have this stream processing job…

Nodes can will
modify the schema

40

Tracking services for fun and profit

41

Schema discovery for fun and profit

42

Can we enforce compliance better?

43

Speaking of headers…

44

And really, as an old school DBA
I miss my constraints

45

Why should Avro users have all the fun?

46

Summary!

1. Schema are APIs for event-driven services

2.Which means compatibility is critical

3. Use Schema Registry from Dev to Prod

4.Schema Registry is in Confluent Open Source

47

Thank You!

