Streaming Microservices: Contracts & Compatibility

Gwen Shapira

Confluent Inc.

:=confluent

APls are contracts
between services

{user_id: 53, address: “2 Elm st”}

Quote
service

Prokie
service

{user_id: 53, quote: 580}
:=confluent 2

But not all services
Tak +o each other clirecﬂy

{user_id: 53, address: “2 Elm st.”}

- HENNERRN

Profile
service

\\\‘/ {user_id: 53, quote: 580}

Quote
service

=CO

And naturally..

{user_id: 53, address: “2 Elm st.”}

i }\

Protie Quote

service

Profie—]
W rocessi

service

.. and then you have a streaming platform

Producer
-
— N Apache —
onnecTtTors onnectrtors
Kalka
</ S~

. Stredming Applications
:=confluent 3PP

Schema are APls.

:=confluent

[t isn't just about the services

Software

engineering Teams &

Culture

Data &
Metadata

:=confluent

Lack of Schema can tightly couple teams and services

2001 2001 Citrus Heights-Sunrise Blvd
Citrus_Hghts 60670001 3400293 34 SAC
Sacramento SV Sacramento Valley SAC
Sacramento County APCD SMA8 Sacramento

Metropolitan Area CA 6920 Sacramento 28 6920
13588 7400 Sunrise Blvd 95610 38 41 56
38.6988889 121 16 15.98999977 -121.271111
10 4284781 650345 52

=confluent |8

Schemas are about how teams work together

{user_id: 53, timestamp: 1497842472}

- HERN

N
service
:%; .;:: new Date(timestamp)
DB
create table
use_id number,

timestamp number)

Bookina
service

=confluent |0

{user_id: 53, timestamp: “June 28, 2017 4:00pm”}

LTI T

Booking
service

-—conriuent

™~

AHributio
service

Moving fast and breaking things

{user_id: 53, timestamp: “June 28, 2017 4:00pm”}

| |

Bookina

service

create table (
use_id number,
timestamp number)

-—conriaeant |

't was never a problem.

Back in my day...

fluent

-=CON

And then It was.

OREILLY"

Moving data around
since 1997
Misc;ina my Schema
since 20I2.
Apache Kaofka PMC

Tweeting a lot W
@awenshap

Neha Narkhede,
Gwen Shapira & Todd Palino

:=confluent -

Existing solutions

:=confluent

Y'IIII RE TII BLAME

15

Existing solutions

' is a commuhication Prob\em“
‘We heed to improve our Pr'ocess“

‘We need to document everything and get
stak.eholder approval'

:=confluent

Schema are APls.

We need specikications

We need to make changes to them
We need to detect breoking changes
We need versions

We need tools

:=confluent

Imagine o world
where enaineers
caon ¥Find

the data they need
and use it GaPer.

ts easy i you try

:=confluent

There are benefits to doing this well

— Bookings

]‘ \ \ | | (\
——— Protie updates
9 LTI

RN

:=conflu

Sometimes, magic happens

" BOOKING| HEERIER

|

’\,1\\»\\/

Boo\éinas ——

TN kPr ofile uPdaJrec;/ ,,

ﬁloom hCJr Y'éque e

ERARA

:=confluent

New!

_—| Beach
\promo

20

.. but most days I'm haPPy i~
the data pipelines are humming
and nothing breaks.

:=confluent

=conflue

Forward comPa+il9ili+y:

O _©
Q/u..\. s —()
/ AN

S O

:=conflue

:=conflue

Compatibility Rules

Forward Compatibility

Backward Compatibility

Full Compatibility

:=confluent

Can add fields
Can delete optional fields
(nullable / default)

Can delete fields

Can add optional fields

Can only modify optional fields

Can add fields

Can delete fields

Nothing is safe

| 25

s confusing. So it is tempting to simplify

‘Never chanae anerhina“
“Adolina Fields is ok. Deleting is not'

“Everyﬂwinﬁ is always optional except For the primary key“

:=confluent

26

Enter Schema Registry

Avro / AVRO-1124
RESTful service for holding schemas ‘

() Comment Agile Board = More ~

Details
Type: New Feature Status: [OPEN |
Priority: T Major Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: None
Labels: None

Description

Motivation: It is nice to be able to pass around data in serialized form but still know the exact schema that was used to serialize it. The overhead of storing the schema
with each record is too high unless the individual records are very large. There are workarounds for some common cases: in the case of files a schema can be stored
once with a file of many records amortizing the per-record cost, and in the case of RPC the schema can be negotiated ahead of time and used for many requests. For
other uses, though it is nice to be able to pass a reference to a given schema using a small id and allow this to be looked up. Since only a small number of schemas are
likely to be active for a given data source, these can easily be cached, so the number of remote lookups is very small (one per active schema version).

Basically this would consist of two things:
1. A simple REST service that stores and retrieves schemas
2. Some helper java code for fetching and caching schemas for people using the registry

:=confluent

People
Assignee:
Reporter:

Votes:
Watchers:

Dates

Created:
Updated:

Agile

View on Board

HipChat discussions

2 J'Export ¥

n Jay Kreps

n Jay Kreps \

36 Vote for this issue

€ Stop watching this issue

10/Jul/12 20:46
09/Feb/16 08:45

27

Schema Registries Everywhere

awbnb

Zconfluent

s MONSANTO @
:=confluent @I i

28

What do Schema Registries do?

. Store schemas - Pu’r/ae-f

2. Link one or more schema to each event

3. Java client that Fetches & caches schemoas
4. Entorcement ok compatiiiity rules

5. Graphical browser

:=confluent

29

Make those contracts binding

:=confluent

ali\zationException

/O

s's

Ol.\.‘o/

O~
O

N
O

30

Responsibility is slightly distributed

Producer Schema Regi;hr'y

/ Serializer \

- s

:=confluent

Producers contain Serializers

. Define the seridlizers:

props.put("key.serializer", “org.apache.kafka.serializers.StringSerializer");
props.put("value.serializer", "io.confluent.kafka.serializers.KafkaAvroSerializer");
props.put("schema.registry.url", schemaUrl);

producer<String, LoglLine> producer = new KafkaProducer<String, LoglLine>(props);

2. Create a record:
ProducerRecord<String, LoglLine> record =

new ProducerRecord<String, LoglLine>(topic, event.getIp().toString(), event);

3. Send the record:
producer.send(record);

:=confluent

32

Serializers cache schemas, register new schema ... and serialize

serialize(topic, isKey, object):
subject = getSubjectName(topic, isKey)
schema = getSchema(record)
schemaldMap = schemaCache.get(subject)
if (schemaldMap.containsKey(schema):
id = schemaldMap.get(schema)
else
1d = registerAndGetId(subject, schema)
schemaldMap.put(schema, id)
output = MAGIC_BYTE + id + avroWriter(schema, object)

:=confluent 5

Schema Registry caches schemas and validates compatibility

register(schema, subject):
if (schemalsNewToSubject):
prevSchema = getPrevSchema(subject)
level = getCompatibilitylLevel(subject)
if (level == FULL):
validator =
new SchemaValidatorBuilder().mutualReadStrategy().validatelLatest()
if (validator.isCompatible(schema, prevSchema))
register
else

throw

:=confluent

34

1 DONT ALWAYS VALIDATE
COMPATIBILITY

i
£
| -
- BUTWHENIDO,®
IT'S INPRODUCTION

p.com

Maven Plugin — because we prefer to catch problems in CI/CD

http://docs.confluent.io/current/schema-registry/docs/maven-plugin.html

« schema-registry:download
» schema-registry:test-compatibility

« schema-registry:register

:=confluent

36

So the flow is...

A 4 X

:=confluent

37

What if.... | NEED to break compatibility?

:=confluent

@,
Q\ﬁ Customer v

O)—TII1

(\mn;m ’ror>
Q ¢

N
O 777777

Customer_v2

38

| have this stream processing job...

Source

Qf Proccssor\l /;frnm

\ FYOC!SSOI"
/k/ strean

(/- Sink ’:wte:sor

O

Processor [oPoLoGY

Nodes earr will
mocliPy the schema

:=confluent

39

Tracking services For fun and Prof—iJr

:=confluent

40

Schema discovery For fun and Prof—i-f

:=confluent

41

Caon we entorce compliar\ce better?

:=confluent

42

:=confluent

Speakina of headers..

43

And really, as an old school DBA
| miss my cohstraints

:=confluent

\Nhy should Avro users have all the fun?

:=confluent

Summary!

. Schema are APls for event-driven services
2. Which means compa’rilailier is critical
3. Use Schema Kegierr'y From Dev to Prod

4.Schema Registrry is in ConHuent Open Source

--:confluent | 46

Thank Youl!

--:;:onfluent

