
The Microservices
journey from a startup

perspective

Susanne Kaiser
CTO

@suksr

Just Software
@JustSocialApps

Each journey is different

“People try to copy Netflix,
but they can only copy what they see.
They copy the results, not the process.”

Adrian Cockcroft, AWS VP Cloud Archtitect,
former Netflix Chief Cloud Architect

Our Transformation Process

Establish Microservices ecosystem

Identify candidates
Decompose candidates





Transformation process

Start End

Transformation process

Start

Theory (straightforward) Reality (evolutionary)

Start End

The beginning … A monolith in every aspect

One team

One collaboration product

One
technology
stack

Single Unit

After an evolving while …

Productivity suffered

Usability and UX suffered

New features
released slowly

JUST PAGE
Social Network

JUST CONNECT
Real-time collaboration

JUST DRIVE
Document Sharing

JUST TASKS
Task Management

Separate Collaboration Apps

Small, autonomous teams
with well-defined responsibilities

JUST PAGE
Social Network

JUST CONNECT
Real-time collaboration

JUST DRIVE
Document Sharing

JUST TASKS
Task Management

In the long run ...

Product Organization Software architecture

Microservices come with complexities

Slow, unreliable network

Multiple independent services

Partitioned data

Operational complexity

Communication complexity

Complexity of eventual consistency

Challenges of transformation

Transformation
takes longer than
anticipated

You still have to
take care of your

existing system

Core functionality
is hard to untangle

 Different skills & tools
required

Our Motivation

● Product and organizational/culture driven
● Enabling autonomous teams

with well-defined responsibilities
● Develop and deploy independently

to release changes quickly

How to start?

?

?

? ?

Transformation process

Identify candidates

Key concepts of modelling Microservices

High cohesion within a service

Loose coupling between services

Identify Bounded Contexts

Well defined business function

Bounded Contexts = Collaboration Apps

Monolith

Transformation process

Decompose candidates

First approach as a co-existing service

JUST DRIVE

JUST DRIVE

JUST LIST

JUST CONNECT

JUST PAGE

DB Adapter

REST API

Web App

DB Adapter

 


Message
Broker



Monolith

Hard work if you do all at once

More features

New UI

New data structure

Maintain & run
current system

Split in steps – e.g. top down

Split in steps – e.g. top down

DB Adapter

Web Client

Browser

Monolith

Split in steps – Step 1) Extracting Web App

Business Logic

DB Adapter

Web Client

Browser

Web Client Web AppMonolith

Split in steps – Step 2) Extracting Business Logic

Business Logic

DB Adapter

Web Client

Browser

Business Logic

DB Adapter

REST API

Web App

Monolith

Split in steps – Step 3) Extracting Data Storage

Business Logic

DB Adapter

Web Client

Browser

Business Logic

DB Adapter

REST API

Web App

Monolith

REST API

Message Broker

Which one first?

Easy to extract Changing
frequently

Different resource
requirements

Stop feeding the monolith

 Monolith

How to handle Authz? Our authz context ...
Authorization

based
on domain
object level

Each domain
object has its

own
authorization

handling

How to handle Authz? We started with…

How to handle Authz? But we missed a point ...

Inter-Service
Authorization
Dependency

How to handle Authz? Leading to …

How to handle Authz? Not decentralized!

Decentralized

+ Fast in-process calls for read access
+ No single point of failure
- Every MS has to implement authz logic
- For a change every MS has to be updated
- Duplication of all global authz data
- Verbose communication
- Tight coupling between services

=> Authorization is a cross-cutting concern

How to handle Authz? Centralized!
Prerequisite:

General rules applicable
for every Microservice!

How to handle Authz?

Centralized

+ One authz logic implementation
+ Change at one place
+ Explicit data sovereignty
+ No duplicated data
- Communication over network
- Single Point of Failure

Whenever you encounter
communication and implementation overhead

leading to high coupling between the services
the seam might be wrong.

Transformation process

Establish Microservices ecosystem

Microservices ecosystem
 CI/CD Pipeline
 Monitoring

 Log tracing

 Central Configuration

 API-Gateway

 Service Discovery

 Load Balancing

 Design for Failure

 Testing (incl. API)

 Dev Sandbox

Microservices ecosystem Tool examples f. Java

 &
 Prometheus &

 Spring Cloud Sleuth & Zipkin

 Spring Cloud Config

 Zuul

 Eureka

 Ribbon

 Hystrix

 Pact (CDC-Testing) 

Lessons learned
● Establishing Microservices ecosystem takes time and requires

different skills & tools
● No explicit infrastructure team slows down the process
● Starting with decomposing big chunks frustrates
● Evaluate communication flow to identify wrong seams
● It takes far longer than originally anticipated

By starting small and decomposing in
manageable steps and taking care

of your ecosystem from the beginning
the transformation process can be handled

with even limited resources.

*) Quarter of Hamburg, famous for its soccer club & entertainment district :)

*

 … AND W/ MICROSERVISES !

THANK YOU!
Susanne Kaiser

CTO
@suksr

Just Software
@JustSocialApps

