
Architecture of a Geo-Distributed SQL Database

CockroachDB

Peter Mattis (@petermattis), Co-founder & CTO

CockroachDB: Geo-distributed SQL Database

Make Data Easy
• Distributed

○ Horizontally scalable to grow with your application

• Geo-distributed
○ Handle datacenter failures
○ Place data near usage
○ Push computation near data

• SQL
○ Lingua-franca for rich data storage
○ Schemas, indexes, and transactions make app development easier

AGENDA
● Introduction
● Ranges and Replicas
● Transactions
● SQL Data in a KV World
● SQL Execution
● SQL Optimization

Distributed, Replicated, Transactional KV*

• Keys and values are strings
○ Lexicographically ordered by key

• Multi-version concurrency control (MVCC)
○ Values are never updated “in place”, newer versions shadow older versions
○ Tombstones are used to delete values
○ Provides snapshot to each transaction

• Monolithic key-space

* Not exposed for external usage

Monolithic Key Space

DOGS
carl

dagne

figment

jack

pinetop

sooshi

stella

zee

muddy

peetey

lula

lady

Monolithic logical key space
● Ordered lexicographically by key

Ranges

DOGS
carl

dagne

figment

jack

pinetop

sooshi

stella

zee

muddy

peetey

lula

lady

carl

dagne

figment

jack

muddy

peetey

lula

lady pinetop

sooshi

stella

zee

Key space divided into contiguous ~64MB ranges

Ranges are small enough to
be moved/split quickly

Ranges are large enough to
amortize indexing overhead

Range Indexing

DOGS
carl

dagne

figment

jack

pinetop

sooshi

stella

zee

muddy

peetey

lula

lady

Index structure used to
locate ranges
(very much like a B-tree)

1

2

3

carl - jack

lady - peetey

pinetop - zee

carl

dagne

figment

jack

muddy

peetey

lula

lady pinetop

sooshi

stella

zee

Ordered Range Scans

DOGS
carl

dagne

figment

jack

pinetop

sooshi

zee

peetey

lula

lady

Ordered keys enable
efficient range scans

dogs >= “muddy” AND <= “stella”

1

2

3

carl - jack

lady - peetey

pinetop - zee

carl

dagne

figment

jack peetey

lula

lady pinetop

sooshi

zee

muddy stella
stella

muddy

Transactional Updates

DOGS
carl

dagne

figment

jack

pinetop

sooshi

zee

peetey

lula

lady

Transactions used to insert
records into ranges

1

2

3

carl - jack

lady - peetey

pinetop - zee

stella

muddy

INSERT[sunny]

INSERT[sunny]
Space available in range? - YES

carl

dagne

figment

jack

muddy

peetey

lula

lady pinetop

sooshi

stella

zee

pinetop

sooshi

stella

zee

muddy

peetey

lula

lady

✓?

Transactional Updates

DOGS
carl

dagne

figment

jack

pinetop

sooshi

zee

peetey

lula

lady

1

2

3

carl - jack

lady - peetey

pinetop - zee

stella

muddy

INSERT[sunny]

carl

dagne

figment

jack

muddy

peetey

lula

lady pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

zee

muddy

peetey

lula

lady

✓

Transactions used to insert
records into ranges

INSERT[sunny]

Range Splits

DOGS
carl

dagne

figment

jack

pinetop

sooshi

zee

peetey

lula

lady

1

2

3

carl - jack

lady - peetey

pinetop - zee

stella

muddy

INSERT[rudy]

carl

dagne

figment

jack

muddy

peetey

lula

lady pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

zee

muddy

peetey

lula

lady

BUT… what happens when
a range is full?

✓? INSERT[rudy]
Space available in range? - NO

Range Splits

DOGS
carl

dagne

figment

jack

pinetop

sooshi

zee

peetey

lula

lady

stella

muddy

INSERT[rudy]

carl

dagne

figment

jack

muddy

peetey

lula

lady pinetop

rudy

sooshi

pinetop

sooshi

stella

zee

muddy

peetey

lula

lady

Ranges are automatically
split, a new range index is
created & order maintained

✓ INSERT[rudy]
split range and insert

stella

sunny

zee

1

2

3

carl - jack

lady - peetey

pinetop - sooshi

4 stella - zee

Raft and Replication

Ranges (~64MB) are the unit of replication

Each range is a Raft group
(Raft is a consensus replication protocol)

Default to 3 replicas, though this is configurable
• Important system ranges default to 5 replicas
• Note: 2 replicas doesn’t make sense in consensus replication

Raft
group

Raft and Replication

Raft provides “atomic replication” of commands

Commands are proposed by the leaseholder replica
and distributed to the follower replicas, but only
accepted when a quorum of replicas have
acknowledged receipt

* Leaseholder == Raft leader

Raft
group

LEASEHOLDER

no
de

 1 no
de

 2

no
de

 4no
de

 3

Range Leases

muddy

peetey

lula

lady

pinetop

sooshi

stella

zee

carl

dagne

figment

jack

Reads with consensus
Reads must talk to a quorum of replicas

READ[carl]

no
de

 1 no
de

 2

no
de

 4no
de

 3

Range Leases

muddy

peetey

lula

lady

pinetop

sooshi

stella

zee

carl

dagne

figment

jack

Reads without consensus
One replica is chosen as the leaseholder

READ[carl]

leaseholder

no
de

 1 no
de

 2

no
de

 4no
de

 3

Range Leases

muddy

peetey

lula

lady

pinetop

sooshi

stella

zee

carl

dagne

figment

jack

Reads without consensus
One replica is chosen as the leaseholder

● Coordinates writes (proposal, key locking)
● Performs reads

READ[carl]

leaseholder

no
de

 1 no
de

 2

no
de

 4no
de

 3

Replica Placement

muddy

peetey

lula

lady

pinetop

sooshi

stella

zee

● Space
● Diversity
● Load
● Latency

carl

dagne

figment

jack

Each Range is a Raft state machine
A Range has 1 or more Replicas

no
de

 1 no
de

 2

no
de

 4no
de

 3

Replica Placement: Diversity

muddy

peetey

lula

lady

carl

dagne

figment

jack

Diversity
optimizes placement of
replicas across “failure
domains”

● Disk
● Single machine
● Rack
● Datacenter
● Region

pinetop

sooshi

stella

zee

no
de

 1 no
de

 2

no
de

 6no
de

 4

no
de

 5

Replica Placement: Load

muddy

peetey

lula

lady

pinetop

sooshi

stella

zee

carl

dagne

figment

jack

Load
Balances placement using
heuristics that considers
real-time usage metrics of
the data itself

This range is high load as it is
accessed more than others

While we show this for ranges within a
single table, this is also applicable across
all ranges across ALL tables, which is the

more typical situation

no
de

 1
no

de
 3

Replica Placement: Latency & Geo-partitioning

muddy

peetey

lula

lady

carl

dagne

figment

jack

pinetop

sooshi

stella

zee

USE/muddy

USE/stella

USE/figment

USE/dagne

USW/jack

USW/lady

USW/peetey

USW/pinetop

EU/carl

EU/lula

EU/sooshi

EU/zee

We apply a constraint that indicates regional
placement so we can ensure low latency

access or jurisdictional control of data

Rebalancing Replicas

no
de

 1 no
de

 5

no
de

 4no
de

 2

no
de

 3

NEWScale: Add a node
If we add a node to the cluster,
CockroachDB automatically
redistributed replicas to even load
across the cluster

Uses the replica placement
heuristics from previous slides to
decide which node to add to and
which to remove from

Rebalancing Replicas

no
de

 1 no
de

 5

no
de

 4no
de

 2

no
de

 3

NEWScale: Add a node
If we add a node to the cluster,
CockroachDB automatically
redistributed replicas to even load
across the cluster

Uses the replica placement
heuristics from previous slides

Movement is decomposed into
adding a replica followed by

removing a replica

Rebalancing Replicas

no
de

 1 no
de

 5

no
de

 4no
de

 2

no
de

 3

NEWScale: Add a node
If we add a node to the cluster,
CockroachDB automatically
redistributed replicas to even load
across the cluster

Uses the replica placement
heuristics from previous slides

Movement is decomposed into
adding a replica followed by

removing a replica

Rebalancing Replicas

no
de

 1 no
de

 5

no
de

 4no
de

 2

no
de

 3

Loss of a node
Permanent Failure
If a node goes down, the Raft
group realizes a replica is missing
and replaces it with a new replica
on an active node

Uses the replica placement
heuristics from previous slides

Rebalancing Replicas

no
de

 1 no
de

 5

no
de

 4no
de

 2

no
de

 3

Loss of a node
Permanent Failure
If a node goes down, the Raft
group realizes a replica is missing
and replaces it with a new replica
on an active node

Uses the replica placement
heuristics from previous slides

The failed replica is removed from the Raft group
and a new replica created. The leaseholder sends a

snapshot of the Range’s state to bring the new
replica up to date.

Rebalancing Replicas

no
de

 1 no
de

 5

no
de

 4no
de

 2

Loss of a node
Temporary Failure
If a node goes down for a moment,
the leaseholder can “catch up” any
replica that is behind

The leaseholder can send commands to be replayed
OR it can send a snapshot of the current Range data.
We apply heuristics to decide which is most efficient

for a given failure.

no
de

 3

AGENDA
● Introduction
● Ranges and Replicas
● Transactions
● SQL Data in a KV World
● SQL Execution
● SQL Optimization

Transactions

Atomicity, Consistency, Isolation, Durability

Serializable Isolation
• As if the transactions are run in a serial order
• Gold standard isolation level
• Make Data Easy - weaker isolation levels are too great a burden

Transactions can span arbitrary ranges

Conversational
• The full set of operations is not required up front

Transactions

Raft provides atomic writes to individual ranges

Bootstrap transaction atomicity using Raft atomic writes

Transaction record atomically flipped from PENDING to COMMIT

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 2

no
de

 3

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 4

carl

dagne

figment

jack

pinetop

sooshi

stella

zee

pinetop

sooshi

stella

zee

pinetop

sooshi

stella

zee

carl

peetey

dagne

lady

lula

muddy

peetey

lady

carl

dagne

figment

jack

INSERT INTO dogs
VALUES (sunny, ozzie)

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 2

no
de

 3

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 4

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

carl

dagne

figment

jack

pinetop

sooshi

stella

zee

pinetop

sooshi

stella

zee

BEGIN TXN1
WRITE[sunny]

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING

pinetop

sooshi

stella

zee

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 2

no
de

 3

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 4

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

carl

dagne

figment

jack

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

BEGIN TXN1
WRITE[sunny]

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING

pinetop

sooshi

stella

sunny

zee

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 2

no
de

 3

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 4

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

carl

dagne

figment

jack

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

BEGIN TXN1
WRITE[sunny]

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING

pinetop

sooshi

stella

sunny

zee

ACK

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 2

no
de

 3

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 4

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

carl

dagne

figment

jack

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

BEGIN TXN1
WRITE[sunny]

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 2

no
de

 3

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 4

carl

dagne

figment

jack

carl

dagne

figment

jack

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

BEGIN TXN1
WRITE[sunny]
WRITE[ozzie]

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING

pinetop

sooshi

stella

sunny

zee

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

ACK

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

no
de

 2

no
de

 3

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

no
de

 4

carl

dagne

figment

jack

carl

dagne

figment

jack

BEGIN TXN1
WRITE[sunny]
WRITE[ozzie]

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

no
de

 2

no
de

 3

no
de

 4

carl

dagne

figment

jack

carl

dagne

figment

jack

BEGIN TXN1
WRITE[sunny]
WRITE[ozzie]

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING

ACK

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

no
de

 2

no
de

 3

no
de

 4

carl

dagne

figment

jack

carl

dagne

figment

jack

BEGIN TXN1
WRITE[sunny]
WRITE[ozzie]

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: PENDING
ACK

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

no
de

 2

no
de

 3

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

no
de

 4

carl

dagne

figment

jack

carl

dagne

figment

jack

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

BEGIN TXN1
WRITE[sunny]
WRITE[ozzie]
COMMIT

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

transactions

TXN1: COMMIT

pinetop

sooshi

stella

sunny

zee

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

Distributed Transactions

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

no
de

 2

no
de

 3

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

no
de

 4

carl

dagne

figment

jack

carl

dagne

figment

jack

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

BEGIN TXN1
WRITE[sunny]
WRITE[ozzie]
COMMIT

GATEWAY

INSERT INTO dogs
VALUES (sunny, ozzie)

pinetop

sooshi

stella

sunny

zee

carl

peetey

dagne

lady

lula

muddy

ozzie

peetey

lady

ACK

Transactions: Pipelining

Serial Pipelined

Transactions: Pipelining

Serial Pipelined

sunny

sunny

BEGIN
WRITE[sunny]

txn:sunny (pending)

Transactions: Pipelining

Serial Pipelined

txn:sunny (pending)

sunny

ozzie

sunny

ozzie

BEGIN
WRITE[sunny]
WRITE[ozzie]

Transactions: Pipelining

Serial Pipelined

txn:sunny (pending)

sunny

ozzie

txn:sunny (commit)[keys: sunny, ozzie]

txn:sunny (staged)[keys: sunny, ozzie]

sunny

ozzie

BEGIN
WRITE[sunny]
WRITE[ozzie]
COMMIT

Transactions: Pipelining

Serial Pipelined

txn:sunny (pending)

sunny

ozzie

txn:sunny (commit)[keys: sunny, ozzie]

BEGIN
WRITE[sunny]
WRITE[ozzie]
COMMIT

Committed once all
operations complete

We replaced the
centralized commit marker

with a distributed one

t

sunny

ozzie
txn:sunny (staged)[keys: sunny, ozzie]

* “Proved” with TLA+

AGENDA
● Introduction
● Ranges and Replicas
● Transactions
● SQL Data in a KV World
● SQL Execution
● SQL Optimization

SQL

Structured Query Language

Declarative, not imperative
• These are the results I want vs perform these operations in this sequence

Relational data model
• Typed: INT, FLOAT, STRING, ...
• Schemas: tables, rows, columns, foreign keys

SQL: Tabular Data in a KV World

SQL data has columns and types?!?

How do we store typed and columnar data in a distributed, replicated,
transactional key-value store?

• The SQL data model needs to be mapped to KV data
• Reminder: keys and values are lexicographically sorted

CREATE TABLE inventory (

id INT PRIMARY KEY,

name STRING,

price FLOAT

)

SQL Data Mapping: Inventory Table

ID Name Price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

Key Value

/1 “Bat”,1.11

/2 “Ball”,2.22

/3 “Glove”,3.33

CREATE TABLE inventory (

id INT PRIMARY KEY,

name STRING,

price FLOAT

)

SQL Data Mapping: Inventory Table

ID Name Price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

Key Value

/<Table>/<Index>/1 “Bat”,1.11

/<Table>/<Index>/2 “Ball”,2.22

/<Table>/<Index>/3 “Glove”,3.33

CREATE TABLE inventory (

id INT PRIMARY KEY,

name STRING,

price FLOAT

)

SQL Data Mapping: Inventory Table

ID Name Price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

Key Value

/inventory/primary/1 “Bat”,1.11

/inventory/primary/2 “Ball”,2.22

/inventory/primary/3 “Glove”,3.33

CREATE TABLE inventory (

id INT PRIMARY KEY,

name STRING,

price FLOAT,

INDEX name_idx (name)

)

SQL Data Mapping: Inventory Table

ID Name Price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

Key Value

/inventory/name_idx/”Bat”/1 ∅

/inventory/name_idx/”Ball”/2 ∅

/inventory/name_idx/”Glove”/3 ∅

CREATE TABLE inventory (

id INT PRIMARY KEY,

name STRING,

price FLOAT,

INDEX name_idx (name)

)

SQL Data Mapping: Inventory Table

ID Name Price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

4 Bat 4.44

Key Value

/inventory/name_idx/”Bat”/1 ∅

/inventory/name_idx/”Ball”/2 ∅

/inventory/name_idx/”Glove”/3 ∅

CREATE TABLE inventory (

id INT PRIMARY KEY,

name STRING,

price FLOAT,

INDEX name_idx (name)

)

SQL Data Mapping: Inventory Table

ID Name Price

1 Bat 1.11

2 Ball 2.22

3 Glove 3.33

4 Bat 4.44

Key Value

/inventory/name_idx/”Bat”/1 ∅

/inventory/name_idx/”Ball”/2 ∅

/inventory/name_idx/”Glove”/3 ∅

/inventory/name_idx/”Bat”/4 ∅

AGENDA
● Introduction
● Ranges and Replicas
● Transactions
● SQL Data in a KV World
● SQL Execution
● SQL Optimization

SQL Execution

Relational operators
• Projection (SELECT <columns>)
• Selection (WHERE <filter>)
• Aggregation (GROUP BY <columns>)
• Join (JOIN), union (UNION), intersect (INTERSECT)
• Scan (FROM <table>)
• Sort (ORDER BY)

○ Technically, not a relational operator

SQL Execution

• Relational expressions have input expressions and scalar expressions
○ For example, a “filter” expression has 1 input expression and a scalar expression that

filters the rows from the child
○ The scan expression has zero inputs

• Query plan is a tree of relational expressions
• SQL execution takes a query plan and runs the operations to completion

SQL Execution: Example

SELECT name

FROM inventory

WHERE name >= “b” AND name < “c”

SQL Execution: Scan

SELECT name

FROM inventory

WHERE name >= “b” AND name < “c”

Scan
inventory

SQL Execution: Filter

SELECT name

FROM inventory

WHERE name >= “b” AND name < “c”

Scan
inventory

Filter
name >= “b” AND name < “c”

SQL Execution: Project

SELECT name

FROM inventory

WHERE name >= “b” AND name < “c”

Scan
inventory

Filter
name >= “b” AND name < “c”

Project
name

SQL Execution: Project

SELECT name

FROM inventory

WHERE name >= “b” AND name < “c”

Scan
inventory

Filter
name >= “b” AND name < “c”

Project
name

Results

SQL Execution: Index Scans

SELECT name

FROM inventory

WHERE name >= “b” AND name < “c”

Scan
inventory@name [“b” - “c”)

The filter gets pushed into the scan

SQL Execution: Index Scans

SELECT name

FROM inventory

WHERE name >= “b” AND name < “c”

Scan
inventory@name [“b” - “c”)

Project
name

Results

SQL Execution: Correctness

Correct SQL execution involves lots of bookkeeping
• User defined tables, and indexes
• Queries refer to table and column names
• Execution uses table and column IDs
• NULL handling

SQL Execution: Performance

Performant SQL execution
• Tight, well written code
• Operator specialization

○ hash group by, stream group by
○ hash join, merge join, lookup join, zig-zag join

• Distributed execution

SQL Execution: Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Bob United States

Hans Germany

Jacques France

Marie France

Susan United States

SQL Execution: Hash Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Bob United States

Hans Germany

Jacques France

Marie France

Susan United States

SQL Execution: Hash Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Bob United States

Hans Germany

Jacques France

Marie France

Susan United States

United States 1

SQL Execution: Hash Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Bob United States

Hans Germany

Jacques France

Marie France

Susan United States

United States 1

Germany 1

SQL Execution: Hash Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Bob United States

Hans Germany

Jacques France

Marie France

Susan United States

United States 1

Germany 1

France 1

SQL Execution: Hash Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Bob United States

Hans Germany

Jacques France

Marie France

Susan United States

United States 1

Germany 1

France 2

SQL Execution: Hash Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Bob United States

Hans Germany

Jacques France

Marie France

Susan United States

United States 2

Germany 1

France 2

SQL Execution: Group By Revisited

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Bob United States

Hans Germany

Jacques France

Marie France

Susan United States

SQL Execution: Sort on Grouping Column(s)

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Jacques France

Marie France

Hans Germany

Bob United States

Susan United States

SQL Execution: Streaming Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Jacques France

Marie France

Hans Germany

Bob United States

Susan United States

France 1

SQL Execution: Streaming Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Jacques France

Marie France

Hans Germany

Bob United States

Susan United States

France 2

SQL Execution: Streaming Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Jacques France

Marie France

Hans Germany

Bob United States

Susan United States

France 2

Germany 1

SQL Execution: Streaming Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Jacques France

Marie France

Hans Germany

Bob United States

Susan United States

France 2

Germany 1

United States 1

SQL Execution: Streaming Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country Name Country

Jacques France

Marie France

Hans Germany

Bob United States

Susan United States

France 2

Germany 1

United States 2

Distributed SQL Execution

Network latencies and
throughput are important
considerations in
geo-distributed setups

Push fragments of computation
as close to the data as possible

Distributed SQL Execution: Streaming Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country

Scan
customers

Scan
customers

Scan
customers

scan

scan

scan

Distributed SQL Execution: Streaming Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country

Scan
customers

Scan
customers

Scan
customers

Group-By
“country”

Group-By
“country”

Group-By
“country”

group-by

group-by

group-by

Distributed SQL Execution: Streaming Group By

SELECT COUNT(*), country

FROM customers

GROUP BY country

Scan
customers

Scan
customers

Scan
customers

Group-By
“country”

Group-By
“country”

Group-By
“country”

Group-By
“country”

group-by

AGENDA
● Introduction
● Ranges and Replicas
● Transactions
● SQL Data in a KV World
● SQL Execution
● SQL Optimization

SQL Optimization

An optimizer explores many plans that are logically equivalent to a given
query and chooses the best one

Parse ExecuteSearch
Memo

Prep
AST Plan

Fold Constants
Check Types
Resolve Names
Report Semantic Errors
Compute properties
Retrieve and attach stats
Cost-independent transformations

Cost-based transformationsParse SQL

SQL Optimization: Cost-Independent Transformations

• Some transformations always make sense
○ Constant folding
○ Filter push-down
○ Decorrelating subqueries*

○ ...

• These transformations are cost-independent
○ If the transformation can be applied to the query, it is applied

• Domain Specific Language for transformations
○ Compiled down to code which efficiently matches query fragments in the memo
○ ~200 transformations currently defined

* Actually cost-based, but we’re treating it as cost-independent right now

SQL Optimization: Filter Push-Down

SELECT * FROM a JOIN b WHERE x > 10

Scan
a@primary

Filter
x > 10

Results

Scan
b@primary

Join

Initial plan

SQL Optimization: Filter Push-Down

SELECT * FROM a JOIN b WHERE x > 10

Scan
a@primary

Filter
x > 10

Results

Scan
b@primary

Join

Filter
x > 10

After filter push-down

SQL Optimization: Cost-Based Transformations

• Some transformations are not universally good
○ Index selection
○ Join reordering
○ ...

• These transformations are cost-based
○ When should the transformation be applied?
○ Need to try both paths and maintain both the original and transformed query
○ State explosion: thousands of possible query plans

■ Memo data structure maintains a forest of query plans
○ Estimate cost of each query, select query with lowest cost

• Costing
○ Based on table statistics and estimating cardinality of inputs to relational expressions

SQL Optimization: Cost-based Index Selection

The index to use for a query is affected by multiple factors
• Filters and join conditions
• Required ordering (ORDER BY)
• Implicit ordering (GROUP BY)
• Covering vs non-covering (i.e. is an index-join required)
• Locality

SQL Optimization: Cost-based Index Selection

SELECT *

FROM a

WHERE x > 10

ORDER BY y

Required orderings affect index selection
Sorting is expensive if there are a lot of rows
Sorting can be the better option if there are few rows

SQL Optimization: Cost-based Index Selection

Required orderings affect index selection
Sorting is expensive if there are a lot of rows
Sorting can be the better option if there are few rows

Scan
a@primary

Filter
x > 10

Sort
y

SELECT *

FROM a

WHERE x > 10

ORDER BY y

SQL Optimization: Cost-based Index Selection

Required orderings affect index selection
Sorting is expensive if there are a lot of rows
Sorting can be the better option if there are few rows

Scan
a@primary

Scan
a@x [10 -)

Filter
x > 10

Sort
y

Sort
y

SELECT *

FROM a

WHERE x > 10

ORDER BY y

SQL Optimization: Cost-based Index Selection

Required orderings affect index selection
Sorting is expensive if there are a lot of rows
Sorting can be the better option if there are few rows

Scan
a@primary

Scan
a@x [10 -)

Filter
x > 10

Scan
a@y

Sort
y

Sort
y

Filter
x > 10

SELECT *

FROM a

WHERE x > 10

ORDER BY y

SQL Optimization: Cost-based Index Selection

Required orderings affect index selection
Sorting is expensive if there are a lot of rows
Sorting can be the better option if there are few rows

Scan
a@primary

Scan
a@x [10 -)

Filter
x > 10

Scan
a@y

Sort
y

Sort
y

Filter
x > 10

SELECT *

FROM a

WHERE x > 10

ORDER BY y

10

100,000

10

10

Lowest
Cost

SQL Optimization: Cost-based Index Selection

Required orderings affect index selection
Sorting is expensive if there are a lot of rows
Sorting can be the better option if there are few rows

Scan
a@primary

Scan
a@x [10 -)

Filter
x > 10

Scan
a@y

Sort
y

Sort
y

Filter
x > 10

SELECT *

FROM a

WHERE x > 10

ORDER BY y

50,000

100,000

50,000

50,000

Lowest
Cost

Locality-Aware SQL Optimization

Network latencies and
throughput are important
considerations in
geo-distributed setups

Duplicate read-mostly data in
each locality

Plan queries to use data from
the same locality

Locality-Aware SQL Optimization

Three copies of the
postal_codes table data

Use replication constraints to
pin the copies to different
geographic regions (US-East,
US-West, EU)

CREATE TABLE postal_codes (

 id INT PRIMARY KEY,

 code STRING,

 INDEX idx_eu (id) STORING (code),

 INDEX idx_usw (id) STORING (code)

)

Locality-Aware SQL Optimization

Optimizer includes locality in
cost model

Automatically selects index
from same locality: primary,
idx_eu, or idx_usw

CREATE TABLE postal_codes (

 id INT PRIMARY KEY,

 code STRING,

 INDEX idx_eu (id) STORING (code),

 INDEX idx_usw (id) STORING (code)

)

SELECT * FROM postal_codes

Conclusion
● Distributed, replicated, transactional key-value store
● Monolithic key space
● Raft replication of ranges (~64MB)
● Replica placement signals: space, diversity, load, latency
● Pipelined transaction operations
● Mapping SQL data to KV storage
● Distributed SQL execution
● Distributed SQL optimization

www.cockroachlabs.com

github.com/cockroachdb/cockroach

Thank You

http://www.cockroachlabs.com
http://github.com/cockroachdb/cockroach

A Simple Transaction

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 1

no
de

 1

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 1

carl

dagne

figment

jack

pinetop

sooshi

stella

zee

pinetop

sooshi

stella

zee

pinetop

sooshi

stella

zee

carl

peetey

dagne

lady

lula

muddy

peetey

lady

carl

dagne

figment

jack

INSERT INTO DOGS (sunny);

A Simple Transaction: One Range

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 1

no
de

 1

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

carl

dagne

figment

jack

pinetop

sooshi

stella

zee

pinetop

sooshi

stella

zee

pinetop

sooshi

stella

sunny

zee

BEGIN
WRITE[sunny]
COMMIT

GATEWAY

INSERT INTO DOGS (sunny);

NOTE: a gateway can be ANY CockroachDB instance. It can
find the leaseholder for any range and execute a transaction

A Simple Transaction: One Range

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 1

no
de

 1

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

carl

dagne

figment

jack

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

BEGIN
WRITE[sunny]
COMMIT

GATEWAY

INSERT INTO DOGS (sunny);

ACK

A Simple Transaction: One Range

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 1

no
de

 1

carl

peetey

dagne

lady

lula

muddy

peetey

lady

no
de

 1

carl

dagne

figment

jack

carl

peetey

dagne

lady

lula

muddy

peetey

lady

carl

dagne

figment

jack

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

pinetop

sooshi

stella

sunny

zee

BEGIN
WRITE[sunny]
COMMIT

GATEWAY

INSERT INTO DOGS (sunny);

ACK

Ranges

CockroachDB implements order-preserving data distribution
• Automates sharding of key/value data into “ranges”
• Supports efficient range scans
• Requires an indexing structure

Foundational capability that enables efficient distribution
of data across nodes within a CockroachDB cluster

* This approach is also used by Bigtable (tablets), HBase (regions) & Spanner (ranges)

