
Surya V Duggirala
IBM

1

Are Opensource Cloud Technologies Ready for Enterprise Scale?

Open Source Software Everywhere

2Courtesy https://www.automotiveworld.com
Courtesy https://www.automotiveworld.com

Speaker Profile

IBM Cloud Engineering Guild Leader

Co-chair, Istio Performance Workgroup Global Technical Ambassador (GTA)

Surya V Duggirala

Open source allows developers to make a difference
Fueling most of the cloud platforms in the industry

© 2018 IBM Corporation

OPEN CONTAINER
PROJECT

Cloud Scale Stats from Multiple Industry Domains
üWeather

üSupport 211M Video starts, 87k concurrent live stream views during a severe hurricane

üHealthcare
üSupport about 7 Million customers + Handling Millions of Immunization records for schools

üBanking
üRetail Banking solutions with more than 6 Million customers + 50K Commercial Banking Customers

üAirlines
üSupport 6700 flights per day to over 350 destinations with web, mobile and kiosk to Cloud

üCar Rental
üSupport 500 Million total DB transactions per day

üConsumer Appliances
üSupport more than 2 Million Appliances with IoT API latency less than 500 ms

What are we going to talk in Today’s Session?

v Opensource Frameworks in Cloud

v Kubernetes Safe Scheduler (SSX)

v Istio OSS Focus on Scale

v Other Open Community Initiatives

v Summary

Cloud Platform Architecture – Opensource Technologies

Hardware

Operating
System

Container
Runtimes

Orchestration

Platform Services

Service Mesh

Content

Hardware Exploitation with
Open Cloud Technologies

Container Friendly
Operating Systems

Lightweight Containers and
Micro-VMs

De facto Operating System
for Cloud

Standardized Monitoring,
Logging and Tracing for

Cloud

Behavioral Insights and
Operational Control for

microservices

Applications, Middleware,
Services for Cloud

Virtualization Virtualization for Cloud

Hardware

Device Plugins for Acceleration to Security and Compression

CPU Manager for Kubernetes

Node Tagging for Hardware Profiles

GPU Plugin for Kubernetes

q K8s API Server Scalability #1 – Exploit Hardware Acceleration
q Container Density #2 – Exploit low latency Persistence Memory
q Noisy Neighbor Problem #3 - Constraining Workloads to CPUs
q Hardware Centric Feature Identification #4 – Node Tagging

https://01.org/kubernetes/building-blocks

https://01.org/kubernetes/building-blocks

Virtualization

q Common Hypervisor is Xen Hypervisor on bare metal
q Common types of Virtualization on Xen are HVM (Hardware Virtual

Machine) and PV (Paravirtualization)
q Virtual Machines run on top of Hypervisors
q Hypervisors take care of CPU Scheduling and Memory partitioning
q Hypervisor is unaware of Networking, external storage devices or

common I/O functions

Hardware

Xen Hypervisor

Domain
Guest

Domain
Guest

Domain
Guest

q Differences between various Virtualization Types (PV vs. HVM)
q HVM Guests will have less Kernel CPU Usage
q HVM also better for storage and network I/O
q Final choice is based on application usage needs

Virtualization Technology Impact

v Kernel CPU on HVM is only 1/3 that of PV VSI node saving significant CPU cycles
v For services like Cloud Foundry, HVM gives almost 7x more density packing almost 200 containers per cell

Container
Runtimes

q Containerd has density advantages to Docker
q Kata Containers and micro-vms are gaining ground
q Nested Container architectures with few clouds
q Sidecars and Pod density considerations
q CPU sharing algorithms and noisy neighbor considerations

Test Docker Containerd
Maximum number of pods
running without node
occasionally going NotReady

400 475

Time for 400 pods to become
ready (100 at a time)

11 mins 3 mins

https://www.opencontainers.org/ https://containerd.io/

https://www.opencontainers.org/
https://containerd.io/

Orchestration

q Default K8s Scheduler algorithm may result in unbalanced clusters
q Default K8s Scheduler depends on static request values
q Descheduler has many Issues
q What we need is a Rescheduler with dynamic cluster insights

q Smart Behavior through Extension
q Enhance Default Scheduler with Smart/Safe Scheduler
q Combination of K8s Extension and Node Annotator
q Support Over-commitment

Safe K8s Scheduler (SSX) Design

q SSX extends the predicates and priority functions of the default
scheduler

q It supports Kubernetes 1.13.5
q Two priority functions are provided: 'safe-overload' and 'safe-balance’

q The former orders nodes based on their calculated risk values
q The latter orders nodes according to a combined measure of average and

standard deviation of the available resources
q Such a combined measure allows a trade-off between the average load

and the variability in the load

https://github.com/IBM/kube-safe-scheduler

https://github.com/IBM/kube-safe-scheduler

SSX Scheduler - Design

SSX Scheduler - Design

SSX Scheduler - Configuration

https://github.com/IBM/kube-safe-scheduler

https://github.com/IBM/kube-safe-scheduler

Platform
Services

q Monitoring Service Scalability #1 – Prometheus operator with tuning knobs
like scraping interval can help scale

q Tracing Scalability #2 – Jaeger operator with sampling can help
q Projects like Thanos can help provide global query view and merge data

from Prometheus HA pairs with massive storage
q Exploiting faster persistent memory systems from latest processors can

significantly help scale monitoring systems on cloud

https://prometheus.io/ https://grafana.com/ github.com/improbable-eng/thanos

https://prometheus.io/
https://grafana.com/
http://github.com/improbable-eng/thanos

Service Mesh

q Application Developer Productivity #1 – Significant improvements to
application developer productivity

q Observability #2 – Best way to control large microservice meshes
q Managed Service Mesh #3 - Cloud Providers are providing managed service

mesh taking out complexities and scale issues
q Self Consumption by Cloud Providers#4 – Many of the internal frameworks of

cloud and many cloud services started using Service mesh

Istio Service Mesh – What is It?

19

Connect

Secure

Control

Observe

Intelligent Routing
Load Balancing

Service to Service
Authentication

Certificate Management

Policy Enforcement
Authorization

Telemetry, Logging,
Visualization

Distributed Tracing
https://istio.io/

https://istio.io/

Istio Open Source Project – Architecting for Scale

26/06/19 20

§ Istio
§ SWAT Team

https://docs.google.com/document/d/1TiMmzbM5r9QlBfs79owBqiAZJgfl
MyXa3Zuev7xZKSc/edit#

§ SWAT Team Report
https://docs.google.com/document/d/1ob9M2TfI5GS3_rqrEhWFIpVyfFVK
PTE8N3YZpeiDJxw/edit#

§ Istio Performance and Scalability Optimization Issues on GH
https://docs.google.com/document/d/17PfZkXGpiVk3qAQdnB_ASSIGvnV
7ZKwH6RXBN3c8_so/edit

§ Istio Community Regression Patrol Framework
§ Istio Code Quality https://ibmcloud-perf.istio.io/regpatrol/

https://docs.google.com/document/d/1TiMmzbM5r9QlBfs79owBqiAZJgflMyXa3Zuev7xZKSc/edit
https://docs.google.com/document/d/1ob9M2TfI5GS3_rqrEhWFIpVyfFVKPTE8N3YZpeiDJxw/edit
https://docs.google.com/document/d/17PfZkXGpiVk3qAQdnB_ASSIGvnV7ZKwH6RXBN3c8_so/edit
https://ibmcloud-perf.istio.io/regpatrol/

Istio Performance Future Design Optimizations for Scale
Focus Area Feature Performance Benefits Feature Design Details
1 Telemetry • Sampling

• New Control
points

Significant reduction in Istio
Control plane resource usage

• Sampling feature provides the ability to collect a
specific sample set of telemetry data instead of
collecting every metric

• With new control features, end users will have
ability to control metric collection either at the
source or destination

2 Pilot Dynamic load
distribution

Uniform traffic distribution from
proxies to Pilot replicas in the
mesh

Grpc-lib centric more dynamic load balancing of traffic
between Envoys and Pilot replicas

3 Proxy Sidecars Improve
network
Bandwidth &
resource
reduction

• Reduce the container network
costs by bypassing kernel with
direct app to envoy through
user space

• Save memory copies and
fragmentation

• Set the correct worker threads

• Using eBPF save almost 60% BW costs
• Need to set the correct Envoy worker thread count

for multiple host environments either statically or
dynamically

4 Buffer and Cache
management

Externalize
Buffer and
Cache tuning at
data plane

Improve the agility and density at
data plane

With this feature end users have the ability to
configure buffer and cache at data plane and control
plane level

5 Envoy Further perf
improvements

Perf benefits to both side cars and
Gateways

Currently with HTTP1.1 traffic, Envoy performs much
slower than HAProxy (need to fix this) 21

Istio Performance Future Design Optimizations for Scale
Focus Area Feature Performance Benefits Feature Design Details
6 InitContainer • Cold Start Required for Knative to reduce cold

startup time
• Any init container adds significant cold-start time

due to paying kubelet startup cost

7 Istio Proxy Startup time Required for Knative to reduce istio
proxy startup time

We see a base of ~200ms cost of pushing envoy config
down from pilot and more at scale. This is a significant
portion of our cold start budget so we need a way to
optimize this to near 0. Statically defining the
northbound and other endpoints which our nodes can
reach and not participating in the actual 'mesh' is an
option

22

Content

https://operatorhub.io/ https://github.com/helm/helm

q Standardized packaging solutions through open source mechanisms
q Cloud Packs through Helm and Operators is becoming a standard way to

deliver Content and services
q Operators provide the ability to automate common operational tasks

through scripted controllers

https://operatorhub.io/
https://github.com/helm/helm

Frameworks
Integration

https://www.cloudfoundry.org/project-eirini/ https://github.com/cloudfoundry/istio-release

https://www.cloudfoundry.org/project-eirini/
https://github.com/cloudfoundry/istio-release

OSS Frameworks Integration

26/06/19 25

§ Cloud Foundry and Istio Integration
§ https://docs.google.com/document/d/1LgLY0g39fzpg1_4zTckbH1mOuuSKGvYwp

2tkakoe9ys/edit#heading=h.tj1oxhcb47cj
§ Cloud Foundry and Kubernetes Integration

§ Project Eirini https://github.com/JulzDiverse/scf/tree/eirini-scf-2.14.5

https://docs.google.com/document/d/1LgLY0g39fzpg1_4zTckbH1mOuuSKGvYwp2tkakoe9ys/edit
https://github.com/JulzDiverse/scf/tree/eirini-scf-2.14.5

Key Takeaways from this Session
Ø Open Source Cloud Technologies are vetted for enterprise

scale
Ø SSX K8s Scheduler will help enhance default K8s scheduler

algorithm to safely balance clusters with over-commit
Ø Istio Performance Workgroup introduced a regression patrol

framework to maintain code quality on a daily basis
Ø Hardware Exploitation will help reduce TCO for Cloud
Ø Operating Systems are getting optimized for containers
Ø Operators are becoming the common delivery mechanism for

content for production use
Ø Virtualization technologies selection will impact container

density

Thank You

Q&A

suryadu@us.ibm.com
https://www.linkedin.com/in/suryaduggirala1
@Duggirala1

mailto:suryadu@us.ibm.com
https://www.linkedin.com/in/suryaduggirala1

