
Dynamically Re-Configurable Event-Driven Systems

Danny Goovaerts

CTO – The Glue

1

Coming soon to a theatre near you

2

Transform incumbent banks from rigid organisations to embracing

change

3

Journey of this presentation

• Which capabilities do we need for this?

• How can we combine new technologies and approaches to deliver

these capabilities?

4

WHICH CAPABILITIES DO WE NEED FOR

THIS?

5

B
a

n
k

in
g

grad
e N

FR
s

BACK END

SYSTEMS

BACK END

SYSTEMS

BACK END

SYSTEMS

FRONT END CHANNELS API ECOSYSTEM

MIDDLEWARE

Branch Mobile
Helpdesk &
Call Center

“It took 10 years to

get twenty million

contacts per month

through Internet

banking.

It took 18 months

for mobile”

Internet

Time to marketPerformance

Impossible or too

expensive to scale

Days

or

weeks

Months

or

years

Stateful Business

logic
• Exactly Once Processing (EOP)
• High availability
• Scaleability

6

DEFINITION OF BUSINESS SERVICES

7

EPC (Event Processing Chain) based journey modelling

8

And the bead goes on ….

EVENT ACTION

REQUEST

FEEDBACK

CONTEXT AND ATTRIBUTE

BASED ACCESS CONTROL

EVENT

ACTION EVENT

EVENT

PRECONDITIONS

Event Data

9

Journey definition is a list of beads specified using a DSL

10

Chacteristics of a business journey

Intrinsically stateful

Traditional date modeled as a journey, i.e. state + processing

Short living (e.g. payment) or long living (e.g. mortgage)

Journey type is specified in a hierachical namespace (enterprise/domain/journey/version)

11

This is not stream processing

Event is defined in the context of a specific journey type (name space), e.g. “saving goal” or “wallet”

Event is either
– initiating : starts a new journey instance of the specific type : a “journey id” is created

– targeted to a specific instance of a journey type, e.g. “cancel payment event”

This is an actor based approach cfr. Akka

Event can originate from
– request ("API")

– backend interaction

– execution of actions of other events

The origin is captured in the context
– authenticated sender

– trust level

– geo location

12

STATEFULL

13

Memory as primary storage : distributed in memory data grid

Operational data store for new data

High speed in memory cache for backend data (system of record is the back end)

Drivers

– performance

– high availability (sharding with primary and backup copies)

– scaleability

Apache Ignite as distributed in memory data grid

Information model defined in JSON schemas

Automatic generation of pojos which are stored in the grid

14

Persistent cache store

No data loss, even when the complete system is shut down

“Overflow area”

– Not all data needs to be available in memory at all times (e.g. transaction history)

Dedicated cache store

– MariaDB 10.2

– No object to relational mapping, objects are stored in JSON serialization

Queries are executed on the cache store as not all data is necessarily in memory

– Indexed virtual columns using JSON functions for search fields

15

TIME TO MARKET

16

Version of a journey as basic unit of deployment

Core docker images
• JVM
• Apache Ignite :

• Data storage
• Event routing

• The Glue Framework
• Event handling

Journey version specific
artifacts are injected
• Journey dsl
• Journey data
• Events
• Action processors
• Queries
Fully self describing

Dynamically reconfigurable micro services architecture

TheGlue/psd2/x2a/1.0

Dynamically reconfigurable micro services architecture

TheGlue/psd2/x2a/1.0

Dynamically reconfigurable micro services architecture

TheGlue/psd2/x2a/1.0 TheGlue/psd2/x2a/2.0 TheGlue/pfm/wallet/1.0

Enabler for change

A version of a journey as a microservice

A journey version is immutable. Coexistence instead of upgrading

Uplifting of journeys to a new version: forward and backward compatibility of the journey data using

schema evolution

– Data is not versioned

– The way you work with and look at the data is versioned

Disruptive for IT organisations of incumbent financial institutions

21

EVENT ROUTING

22

In memory data and processing grid

IMDG offers collocation using a affinity key
– Journey data

– Events

– Jouney id is the partitioning and affinity key

Apache Ignite also supports collocation of processing and data using an affinity key

23

Routing of events to the correct node

TheGlue/psd2/x2a/1.0 TheGlue/psd2/x2a/2.0 TheGlue/pfm/wallet/1.0

Request without JourneyId
• Initiating event
• Journey id is generated in request handler
• Nodefilter to route to correct node which

ultimately will have the primary copy of the
data

• Request is translated in the correct event
which is stored

Request with JourneyId
• AffinityRun (Journey Id, cache name)

NFR : BUSINESS ROBUSTNESS (EOP)

B
a
n

k
in

g
grad

e N
FR

s

25

Business Robustness

Exactly once processing (EOP) of events

– Cannot be lost (RPO=0)

– MUST be handled exactly once without human intervention in good
and bad weather conditions (RTO=0)

• Nodes going down

• Nodes being added

• Cold restart

• Technical errors in the environment

– Events for different journey instances can/should be handled in
parallel

– Concurrent events for the same journey instance must be handled
sequentially (avoid optimistic locking)

26

To Handle

EOP in a distributed grid

Journey A Journey B

B

Journey B

Journey Data

Event DataB

27

theglue/signing/basketsign/1.3 mybank/payment/sct/2.0

To Handle

EOP in a distributed grid : node stops

Journey B Journey B

Journey Data

Event DataB

1

B B

2 3

1
2

3

28

mybank/payment/sct/2.0

To Handle

EOP in a distributed grid : node stops

Journey B

Journey Data

Event DataB

1

2

3
1

B B

2 3

29

mybank/payment/sct/2.0

NFR : SCALEABILITY AND PERFORMANCE

TUNING

B
a
n

k
in

g
grad

e N
FR

s

31

Scaling and performance tuning

It is extremely difficult to translate business throughput requirements into sizing

requirements of the underlying technical components

Scalability and performance tuning

Journey node contains all the resources needed to drive an instance through its life

– Code + data

– Memory

– Processing threads

Maximum throughput of a journey node can be tested and tuned on the target

hardware

Nodes can be added as the required throughput increases

Simple scaling model based business parameters, not

technical parameters

33

Scaleability caveats

Data is heavy, so leave it in place as much as possible

– Correct routing and collocation

– Journey data has no backup partitions

Grid configuration changes (adding, removing nodes) leads to rebalancing of partitions

– In case of rebalancing, journey data partitions are redistributed but are left empty. Entries are fetched from the cache

store when used.

– Event caches are kept small (limited to not yet handled events)

34

Summary

Using the combination of

– Event based service modelling

– In memory data and processing grid

– Docker based deployment

You can build a dynamically reconfigurable statefull microservice architecture which allows to

– Move very quickly from business idea to roll out in a production environment, and

– Roll out new versions in a controlled way

While adhering to the highest non functional requirementsto

– Exactly once processing

– Scalability

35

A great team!

Benjamin, Sven, Bart, Lenne, Jonathan, Felix, Mike, Bart, Lieven,

Dieter, Ward, Ilse, Emilian, George, Irina, Cristi, Fox, Dan, Iustina,

Pieter, Stefan, Robin, Ellen, Joris, Sam, Jo, Jens, Valentina, Paul,

Thomas

Thank you for a hell of a journey over the last 18 months!

And thank you all for staying throughout this talk!

36

