
How to Evolve Kubernetes Resource
Management Model
Jiaying Zhang (github.com/jiayingz)
June 26th, 2019

Why you may want to listen to this talk as an app developer

Need to understand
some underlying
mechanisms to operate

Need to read user
manual, carefully

You know how to use
it when you see it

where we are today

Evolving
Kubernetes
Resource
Management
Model

Why do I need Kubernetes and what can it do - from Kubernetes Concepts

● Service discovery and load balancing
● Storage orchestration
● Automated rollouts and rollbacks

● Automatic bin packing
Kubernetes allows you to specify how much CPU and memory (RAM)
each container needs. When containers have resource requests
specified, Kubernetes can make better decisions to manage the
resources for containers.

● Self-healing
● Secret and configuration management

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-do-i-need-kubernetes-and-what-can-it-do

Why do I need to care about resource management in Kubernetes?

● Resource efficiency is one of
major benefits of
Kubernetes

● People want their
applications to have
predictable performance

● Some underlying details you
want to know to make better
use of your resources and
avoid future pitfalls

Let’s start with a simple web app

metadata:
 name: myapp
spec:
 containers:
 - name: web
 - resources
 requests:
 cpu: 300m
 memory: 1.5Gi
 Limits:
 cpu: 500m
 memory: 2Gi

$ kubectl create -f myapp.yaml
pod "myapp" created

$ kubectl get pod myapp
NAME READY STATUS RESTARTS AGE
myapp 0/1 Pending 0 29s

$ kubectl describe pod myapp
Name: myapp
Namespace: default
Node: <none>
…
Events:
 Type Reason Message
 Warning FailedScheduling 0/3 nodes
are available: 3 Insufficient memory.

apiVersion: v1
kind: Node
status:
 capacity:
 cpu: “1”
 memory: 3786940Ki
 allocatable
 cpu: 940m
 memory: 2701500Ki

apiVersion: v1
kind: Pod
spec:
 containers:
 - resources
 requests:
 cpu: 150m
 memory: 1.5Gi
 limit:
 memory: 2Gi

High level overview

Container Engine
Kubernetes Master

 Scheduler
Assigning pods to nodes

 API Server
ResourceQuota and
LimitRange admission
control

apiVersion: v1
kind: Pod
spec:
 containers:
 - resources
 requests:
 cpu: 150m
 memory: 1.5Gi
 limit:
 memory: 2Gi

apiVersion: v1
kind: Pod
spec:
 containers:
 - resources
 requests:
 cpu: 150m
 memory: 1.5Gi
 limit:
 memory: 2Gi

apiVersion: v1
kind: Node
status:
 capacity:
 cpu: “1”
 memory: 3786940Ki
 allocatable
 cpu: 940m
 memory: 2701500Ki

apiVersion: v1
kind: Node
status:
 capacity:
 cpu: “1”
 memory: 3786940Ki
 allocatable
 cpu: 940m
 memory: 2701500Ki

Scheduler - assign node to pod

● A very simplified view from 1000 feet high:

while True:

 pods = get_all_pods()

 for pod in pods:

 if pod.node == nil:

 assignNode(pod)

● Scheduling algorithm makes sure selected node satisfies pod resource requests
○ For each specified resource, ∑Pod requests <= node allocatable

Node level

System processes also compete resources with user pods

• Allocatable resource
• how much resources can be allocated to users’ pods
• allocatable = capacity - reserved (system overhead)

Allocatable

Capacity

P3P1 P2 System
Overhead

Reserved

Reserve enough resources for
system components to avoid
problems when utilization is high

Pod requested resource needs to be within node allocatable

metadata:
 name: myapp
spec:
 containers:
 - name: web
 - resources
 requests:
 cpu: 300m
 memory: 1.5Gi
 Limits:
 cpu: 500m
 memory: 2Gi

create a node with more memory

$ kubectl get pod myapp
NAME READY STATUS RESTARTS AGE
myapp 1/1 Running 0 4s

$ kubectl describe pod myapp
Name: myapp
Namespace: default
Node: node1
…
Events:
 Type Reason Message
Scheduled Successfully assigned default/myapp to node1
...
Created Created container
Started Started container

What about limits? - Limits are only used at node level

● Desired State (specification)
○ request: amount of resources requested by a

container/pod
○ limit: an upper cap on the resources used by a

container/pod
● Actual State (status)

○ actual resource usage: lower than limit

Based on request/limit setting, pods have different QoS

● Guaranteed: 0 < request == limit
● Burstable: 0 < request < limit
● Best effort: no request/limit specified, lowest priority

limit

request
usage

But you need to know a bit more to use them right

Resource requests and limits can have different implications on different
resources, as the underlying enforcing mechanisms are different.

● Compressible
○ Can be throttled
○ “Merely” cause slowness when revoked
○ E.g., CPU, network bandwidth, disk IO

● Incompressible
○ Not easily throttled
○ When revoked, container may die or pod may be evicted
○ E.g., memory, disk space, no. of processes, inodes

How CPU requests are used at node

● CPU requests map to cgroup cpu.shares

● CPU share defines relative CPU time assigned to a cgroup
○ cgroup assigned cpu time = cpu.shares / total_shares
○ E.g., 2 available cpu cores, c1: 200 shares, c2: 400 shares

■ c1: 0.67 cpu time, c2: 1.33 cpu time
○ E.g., 2 available cpu cores, c1: 200 shares, c2: 400 shares, c3: 200 shares

■ c1: 0.5 cpu time, c2: 1 cpu time, c3: 0.5 cpu time

 resources:
 requests:
 cpu: 300m
 limits:
 cpu: 500m

$ cat /sys/fs/cgroup/cpu/kubepods/burstable/podxxx/cpu.shares
307

How CPU limits are used at node

● CPU limits map to cgroup cfs “quota” in each given “period”
○ cpu.cfs_quota_us: the total available run-time within a period
○ cpu.cfs_period_us: the length of a period. Default setting: 100ms.

● Implication: can cause latency if not set correctly
● E.g.: a container takes 30ms to handle a request without throttling

○ 50m cpu limit: takes 30ms to finish the task
○ 20m cpu limit: takes > 100ms to finish the task

 resources:
 requests:
 cpu: 300m
 limits:
 cpu: 500m

$ cat /sys/fs/cgroup/cpu/kubepods/burstable/podxxx/cpu.cfs_quota_us
50000
$ cat /sys/fs/cgroup/cpu/kubepods/burstable/podxxx/cpu.cfs_period_us
100000

Caveats on using cpu limits - example issues on completely fair scheduler (CFS)

Overly aggressive CFS

https://gist.github.com/bobrik/2030ff040fad360327a5fab7a09c4ff1

Understand why you want to use cpu limits

● Pay-per-use: constraint cpu usage to limit cost

● Latency provisioning: set latency expectations with worst-case CPU access time

● Reserve exclusive cores: static CPU manager

● Keep Pod in guaranteed QoS to avoid:

○ Eviction: no longer based on QoS class any more

○ OOM killing: still takes QoS into account, but you perhaps want to avoid OOM
killing by setting your memory requests/limits right

 Quick takeaway: if you have to use CPU limits, use it with care

How memory requests are used at node

● Memory requests don’t map to cgroup setting.
● They are used by Kubelet for memory eviction.

$ kubectl describe pod myapp
Name: myapp
…
Events:
 Type Reason Message
Scheduled Successfully assigned default/myapp to node1
...
Created Created container
Started Started container
 Evicted The node was low on resource: memory. Container myapp was using 12700Ki,
which exceeds its request of 5000Ki
 Killing Killing container with id docker://myapp:Need to kill Pod

metadata:
 name: myapp
spec:
 containers:
 - resources
 requests:
 memory: 5Mi
 Limits:
 memory: 20Mi

Eviction - Kubelet’s hammer to reclaim incompressible resources

● Kubelet determines when to reclaim resources based on eviction signals and
eviction thresholds

● Eviction signal: current available capacity of a resource. What we have today:
○ memory.available & allocatableMemory.available
○ nodefs.available & imagefs.available
○ nodefs.inodesFree & imagefs.inodesFree
○ pid.available - partially implemented

● Eviction threshold: minimum value of a resource Kubelet should maintain
○ Eviction-soft is hit: Kubelet starts reclaiming resource with Pod termination grace period as

min(eviction-max-pod-grace-period, pod.Spec.TerminationGracePeriod)
○ Eviction-hard is hit: Kubelet starts reclaiming resources immediately, without grace period.

Eviction - Kubelet’s hammer to reclaim incompressible resources

● Kubelet determines when to reclaim resources based on eviction signals and
eviction thresholds

● Eviction signal: current available capacity of a resource. What we have today:
○ memory.available & allocatableMemory.available
○ nodefs.available & imagefs.available
○ nodefs.inodesFree & imagefs.inodesFree
○ pid.available - partially implemented

● Eviction threshold: minimum value of a resource Kubelet should maintain
○ Eviction-soft is hit: Kubelet starts reclaiming resource with Pod termination grace period as

min(eviction-max-pod-grace-period, pod.Spec.TerminationGracePeriod)
○ Eviction-hard is hit: Kubelet starts reclaiming resources immediately, without grace period.

● Ideally, your providers/operators should set these
configs right for you that you need to worry about them.

What you need to know about eviction?

● Your pod may get evicted when it uses more than its requested amount of a
resource and that resource is near being exhausted on a node

● Kubelet decides which pod to evict based on eviction score calculated from:
○ Pod priority
○ How much pod’s actual usage is above its requests

Caveat: currently not implemented for pid.

What you need to know about eviction?

● You can reduce your pod’s risk of being evicted by:
○ Set right requests for memory and ephemeral storage.
○ Avoid using too much of other types of incompressible resources or increase

their node limits.
○ Using higher priority.

What you need to know about eviction?

● When things go unexpected, check with cluster operator on the underlying
settings
○ Kubelet or Docker run out of a resource: resource eviction signal and

threshold settings
○ Frequently exhausts pids or inodes: Node sysctl setting
○ Pod terminates too quickly: eviction max pod grace period setting
○ Node oscillating on resource pressure (e.g., MemoryPressure, DiskPressure)

conditions: eviction pressure transition period setting

How memory limits are used at node

● Memory limits map to cgroup memory.limit_in_bytes
● Container exceeding its memory limits will get OOM-killed

 resources:
 limits:
 memory: 128Mi

$ cat /sys/fs/cgroup/memory/kubepods/burstable/podxxx/memory.limit_in_bytes
134217728

Why you may still see OOM killing without exceeding your limits

● OS can kick in before Kubelet is able to reclaim enough memory - OOM killing
● Under memory pressure, Linux kernel determines which process to kill based on

oom_score
● Today, Kubelet adjusts oom_score based on QoS class and memory requests:

○ Critical node components (Kubelet, Docker, etc): -999
○ Guaranteed Pod: -998
○ Best-effort Pod: 1000
○ Burstable Pod: between -998 to 1000, calculated based on memory

requests

What you need to know about OOM killing?

● OOM killing is even worse than memory eviction
○ You whole system may experience performance downgrade
○ Application doesn’t have chance to terminate gracefully

● You can reduce chance for your application being OOM killed by:
○ Setting right memory limits
○ Reserve enough memory for your system components
○ Don’t accumulate too many dirty pages

Local ephemeral storage - Beta

● Local ephemeral: local root partition shared by
pods/containers and system components
○ Same lifetime as pods/containers
○ Container: writable layers, image layers, logs
○ Pod: emtyDir volumes

● Persistent: dedicated disks (remote or local)
○ Explicit lifetime outlives containers/pods
○ Represented by PV/PVC

EmptyDir
Volume

container

pod

Ephemeral storage

PVC

PV

Persistent storage

apiVersion: v1
kind: Pod
spec:
 containers:
 - name: db
 image: mysql
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumeMounts:
 - mountPath: /database
 name: database-volume
 volumes:
 - name: cache-volume
 emptyDir:{}
 volumes:
 - name: database-volume
 persistentVolumeClaim:
 claimName: task-pv-claim

How to set ephemeral storage resource requirements

● Container level: can specify
ephemeral-storage requests and
limits

● Pod level: emptyDir sizeLimit
● Scheduler schedules a Pod to a

node if the sum of the
ephemeral-storage requests from
the scheduled containers is less
than the node’s allocatable
ephemeral-storage

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: db
 image: mysql
 resources:
 requests:
 ephemeral-storage: "2Gi"
 limits:
 ephemeral-storage: "4Gi"
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir:

 sizeLimit: “10Gi”

Ephemeral storage eviction

● Under disk pressure, a pod can get evicted if:
○ With LocalStorageCapacityIsolation enabled:

■ It has a container whose ephemeral storage usage exceeds the
container’s limits

■ It has an emptyDir whose disk usage exceeds its sizeLimit
■ ∑ container’s usage + ∑ emptyDir’ usage > ∑ container’s limits

○ It has highest eviction score calculated from:
■ Priority
■ How much pod’s actual usage is above its requests

Beyond basic use cases

● What if my app makes heavy use of disk IO?
○ Provision enough IO bandwidth and IOPs on your node
○ Avoid running two IO heavy Pods on the same node with Pod anti-affinity
○ Consider to use dedicated disks/volumes

● What if my app is network latency sensitive or requires a lot network bandwidth?
○ Use Pod anti-affinity to spread your pods to different nodes
○ Can request high-performance NIC as extended resource
○ but first make sure bottleneck is not on network switches

Beyond basic use cases

● What if my app is sensitive to CPU cache interference
○ Use static CPU manager policy and request integer number of CPUs

● What if I want to run my workload on GPU?
○ Can request GPU as extended resource, with requests == limits
○ Better protect your GPU resource with taints & tolerations

Other things may affect your pod’s scheduling/running

● Priority and preemption
○ Preempt lower priority pods to schedule higher priority pending pods
○ Knob to make sure your high-priority workload have place to run.

● Resource Quota admission
● LimitRange

Resource admission control - how different teams share resources in a cluster

● Namespace
○ Partition resources into logically named groups
○ Ability to specify resource constraints for each group

namespace ns

Capacity

Capacity

p1 p2 p4

ns

p5 p6p3

Resource admission control - how different teams share resources in a cluster

● Resource quota: specifies total
resource requests/limits for a
namespace
○ Checked during pod creation

through API server admission
control:
■ ∑Pod requests <= request

quota
■ ∑Pod limit <= limit quota

apiVersion: v1
kind: ResourceQuota
metadata:
 name: demo
spec:
 hard:
 requests.cpu: 5
 scopeSelector:
 matchExpressions:

 - operator: In
 scopeName: PriorityClass
 Values: [“low”]

Resource admission control - how different teams share resources in a cluster

● LimitRange
○ Configures default requests

and limits for a namespace
○ Enforce minimum/maximum

pod/container resource
requirements

○ Enforce a ratio between
request and limit for a resource

apiVersion: v1
kind: LimitRange
metadata:
 name: demo
spec:
 limits:
 - default:
 cpu: 500m
 Memory: 900Mi
 defaultRequest:
 cpu: 100m
 Memory: 100Mi
 type: Container

Too many things to think about?

Things that can make your life easier - Horizontal Pod Autoscaler (HPA)

● Automatically scale up/down pods in a ReplicaSet based on CPU utilization or
some metrics you defined

● Use HPA when
○ You can load balance work among replicas
○ Your pod’s resource usage is proportional to its work input
○ Better to be combined with Cluster Autoscaler

Things that can make your life easier - Cluster Autoscaler (CA)

● Add more nodes to run pending pods or scale down node after your job finishes
● Use CA if nodes can be dynamically created in your k8s cluster

Things that can make your life easier - Vertical Pod Autoscaler (VPA)

● Measures and/or sets resource requests for you.
● Consider VPA if your application's resource requirements change over time
● Bearing in mind some of its features are still experimental

Wrap up

● Set CPU requests to reserve CPU time your pod needs. Use CPU limits with care.
● Sets correct memory requests/limits to avoid memory eviction and/or OOM.
● Prevents your nodes from running out of disk with ephemeral storage

requests/limits and emptyDir sizeLimit.
● Avoid exhausting incompressible resources.
● If your pod uses a lot IO or network, try to provision enough or not share them.
● Understand your cluster admin setting to avoid surprise.
● You can request GPU as extended resource.
● Use autoscalers if possible to make your life easier.

We still have a LONG way to go

Evolving
Kubernetes Resource
Management
Model

