How to Evolve Kubernetes Resou
Management Model , C

Jiaying Zhang (github.com/jiayingz)
June 26th, 2019

Why you may want to listen to this talk as an app developer

You know how to use
it when you see it

“ﬂ‘;t;m"';:"’mfbf“" Need to read user
e manual, carefully Evolving
death or serious injury.
Kubernetes
Resource

S Management
Model

where we are today

Need to understand
some underlying
mechanisms to operate

Why do | need Kubernetes and what can it do - from

e Service discovery and load balancing
Storage orchestration
Automated rollouts and rollbacks

e Automatic bin packing
Kubernetes allows you to specify how much CPU and memory (RAM)
each container needs. When containers have resource requests
specified, Kubernetes can make better decisions to manage the

resources for containers.

Self-healing
Secret and configuration management

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-do-i-need-kubernetes-and-what-can-it-do

Why do | need to care about resource management in Kubernetes?

e Resource efficiency is one of
major benefits of
Kubernetes

e People want their
applications to have
predictable performance

e Some underlying details you
want to know to make better
use of your resources and
avoid future pitfalls

Let's start with a simple web app

metadata:
name: myapp
spec:
containers:
- name: web
- resources
requests:
cpu: 300m
memory: 1.5Gi
Limits:
cpu: 500m
memory: 2Gi

©

ke

S kubectl create -f myapp.yaml
pod "myapp" created

S kubectl get pod myapp
NAME READY STATUS RESTARTS AGE
myapp 0/1 Pending 0 29s

S kubectl describe pod myapp

Name: myapp

Namespace: default

Node: <none>

Events:
Type Reason Message
Warning FailedScheduling 0/3 nodes

are available: 3 Insufficient memory.

High level overview

Container Engine

apiVersion: v1 apiVersion: v1
Kubernetes Master) i
apiVersion: v1

apiVersion: v1

apiVersion: v1 | apiVersion: v1 b
kind: Pod - kind: Node oo
spec: Ilm > @ S.Ch.edU|el’ status: o G
containers: Assigning pods to nodes capacity: _
- resources cpu: “1” (i
requests: memory: 3786940Ki <
cpu: 150m allocatable)
memory: 1.5Gi @ APl Server cpu: 940m i
limit; ResourceQuota and memory: 2701500Ki
memory: 2Gi — LimitRange admission

control

Scheduler - assign node to pod

e A very simplified view from 1000 feet high:

while True:
pods = get all pods|()
for pod in pods:
if pod.node == nil:

assignNode (pod)

e Scheduling algorithm makes sure selected node satisfies pod resource requests
o For each specified resource, >Pod requests <= node allocatable

Node level

System processes also compete resources with user pods

 Allocatable resource

- how much resources can be allocated to users’ pods
- allocatable = capacity - reserved (system overhead)

Capacity

Reserve enough resources for
Allocatable Reserved system components to avoid
problems when utilization is high

Pod requested resource needs to be within node allocatable

metadata: # create a node with more memory
name:. myapp o °
) Q $ kubectl get pod myapp
Spec' . NAME READY STATUS RESTARTS AGE
containers: myapp 1/1 Running 0 4s
- name: web 5 kubectl describe pod
ec escribe pod myapp
- resources Name : AT
reqUESts: Namespace: default
CpU: 300m Node: nodel
memory: 1.5Gi Fenta
Limits: Type Reason Message
Cpu: 500m Scheduled Successfully assigned default/myapp to nodel
memory: 2GI Created Created container

Started Started container

What about limits? - Limits are only used at node level

e Desired State (specification) = | limit
o request: amount of resources requested by a
container/pod usage
o limit: an upper cap on the resources used by a AW .Ya
container/pod V U request

e Actual State (status)
o actual resource usage: lower than limit

Based on request/limit setting, pods have different QoS

e Guaranteed: 0 < request == limit
e Burstable: 0 < request < limit
e Best effort: no request/limit specified, lowest priority

But you need to know a bit more to use them right

Resource requests and limits can have different implications on different
resources, as the underlying enforcing mechanisms are different.

e Compressible
o Can be throttled
o “Merely” cause slowness when revoked
o E.g., CPU, network bandwidth, disk 10
e Incompressible
o Not easily throttled
o When revoked, container may die or pod may be evicted
o E.g., memory, disk space, no. of processes, inodes

How CPU requests are used at node

e CPU requests map to cgroup cpu.shares

e CPU share defines relative CPU time assigned to a cgroup
o cgroup assigned cpu time = cpu.shares / total_shares
o E.g., 2 available cpu cores, c1: 200 shares, c2: 400 shares
m C1:0.67 cputime, c2:1.33 cputime
o E.g., 2 available cpu cores, c1: 200 shares, c2: 400 shares, c3: 200 shares
m C1:0.5cputime, c2:1 cputime, c3: 0.5 cputime
resources:
requests:
cpu: 306m

limits:
cpu: 5606m

S cat /sys/fs/cgroup/cpu/kubepods/burstable/podxxx/cpu.shares
307

How CPU limits are used at node

CPU limits map to cgroup cfs “quota” in each given “period”
o cpu.cfs_quota_us: the total available run-time within a period
o cpu.cfs_period_us: the length of a period. Default setting: 100ms.
Implication: can cause latency if not set correctly
E.g.: a container takes 30ms to handle a request without throttling
o 50m cpu limit: takes 30ms to finish the task
o 20m cpu limit: takes > 100ms to finish the task

" ,?g ; Jg : : S : $ cat /sys/fs/cgroup/cpu/kubepods/burstable/podxxx/cpu.cfs_quota us
i 50000
cpu: 306m
liml.'l?. ts: $ cat /sys/fs/cgroup/cpu/kubepods/burstable/podxxx/cpu.cfs period us
cpu: 50om 100000

Caveats on using cpu limits - example issues on completely fair scheduler (CFS)

sched/fair: Fix bandwidth timer clock drift condition

I noticed that cgroup task groups constantly get throttled even
if they have low CPU usage, this causes some jitters on the response
time to some of our business containers when enabling CPU quotas.

It's very simple to reproduce:

mkdir /sys/fs/cgroup/cpu/test
cd /sys/fs/cgroup/cpu/test
echo 100000 > cpu.cfs_quota_us
echo $$ > tasks

then repeat:
cat cpu.stat | grep nr_throttled # nr_throttled will increase steadily
After some analysis, we found that cfs_rq::runtime_remaining will
be cleared by expire_cfs_rq_runtime() due to two equal but stale
"cfs_{b|q}->runtime_expires" after period timer is re-armed.
The current condition to judge clock drift in expire_cfs_rqg_runtime()
is wrong, the two runtime_expires are actually the same when clock
drift happens, so this condtion can never hit. The orginal design was

correctly done by this commit:

a9cf55b ("sched: Expire invalid runtime")

Overly agqgressive CFS

100ms sleep between iterations

We burn CPU for 5ms and then we sleep for 100ms, that sums up to 105ms, so in theory we should never go over quota. In
practice, we see throttles from time to time.

$ docker run --rm -it --cpu-quota 20000 --cpu-period 100000 -v $(pwd):$(pwd) -w $(pwd) golang:1.9.2 go run
2017/12/08 01:42:50 [0] burn took 5ms, real time so far: 5ms, cpu time so far: 6éms

2017/12/08 01:42:50 [1] burn took 5ms, real time so far: 194ms, cpu time so far: 12ms

2017/12/08 01:42:50 [2] burn took 5ms, real time so far: 299ms, cpu time so far: 18ms

2017/12/08 01:42:50 [3] burn took 5ms, real time so far: 404ms, cpu time so far: 23ms

1000ms sleep between iterations

With 5ms burns and 1000ms sleeps between them there are no 100ms intervals during which we can possibly see 20ms
burned on CPU to get throttled. However, we see lots of throttling here. Aimost every burn is throttled.

$ docker run --rm -it --cpu-quota 20000 --cpu-period 100000 -v $(pwd):$(pwd) -w $(pwd) golang:1.9.2 go run
2017/12/08 01:44:27 [0] burn took 5ms, real time so far: 5ms, cpu time so far: 6éms
2017/12/08 01:44:28 11 burn took 106ms. real time so far: 1187ms. cou time so far: 12ms

forkbomber commented on Mar 8

The issue seems to be fixed in the recent kernels.
Cannot reproduce on CoreOS Container Linux Stable 2023.4.0 running Kernel 4.19.23:

» Docker Desktop for Mac Stable 2.0.0.3 running Linux Kernel 4.9.125 - Not OK
» Minikube 0.35.0 on VirtualBox on a Mac running Linux Kernel 4.15.0 — Not OK

» CoreOS Container Linux Stable 2023.4.0 on AWS EC2 running Linux Kernel 4.19.23 — OK

https://gist.github.com/bobrik/2030ff040fad360327a5fab7a09c4ff1

Understand why you want to use cpu limits

e Pay-per-use: constraint cpu usage to limit cost
e Latency provisioning: set latency expectations with worst-case CPU access time
e Reserve exclusive cores: static CPU manager
e Keep Pod in guaranteed QoS to avoid:
o Eviction: no longer based on QoS class any more

o OOM killing: still takes QoS into account, but you perhaps want to avoid OOM
killing by setting your memory requests/limits right

Quick takeaway: if you have to use CPU limits, use it with care

How memory requests are used at node

e Memory requests don’t map to cgroup setting. metadata:)
P c O
e They are used by Kubelet for memory eviction. name: myapp O
spec:
S kubectl describe pod myapp Containers:
Hames ayape - resources
Events: requests:
Type Reason Message memory: 5M|
Scheduled Successfully assigned default/myapp to nodel Limits.
Created Created container memory: 20M|
Started Started container
Evicted The node was low on resource: memory. Container myapp was using 12700Ki,

which exceeds its request of 5000Ki
Killing Killing container with id docker://myapp:Need to kill Pod

Eviction - Kubelet's hammer to reclaim incompressible resources

e Kubelet determines when to reclaim resources based on eviction signals and
eviction thresholds

e Eviction signal: current available capacity of a resource. What we have today:
O memory.available & allocatableMemory.available
0 nodefs.available & imagefs.available
0 nodefs.inodesFree & imagefs.inodesFree

O pid.available - partially implemented

e Eviction threshold: minimum value of a resource Kubelet should maintain
o Eviction-soft is hit: Kubelet starts reclaiming resource with Pod termination grace period as
min(eviction-max-pod-grace-period, pod.Spec.TerminationGracePeriod)
o Eviction-hard is hit: Kubelet starts reclaiming resources immediately, without grace period.

Eviction - Kubelet's hammer to reclaim incompressible resources

e Kubelet determines when to reclaim resources based on eviction signals and
eviction thresholds
e Eviction signal: current available capacity of a resource. What we have today:

O memory.available & allocatableMemory.available

o Ide roviders/operators should set these

nod€ s 1nodes?iee imagefs.fnodesFree

conflg@ -right for-you that you-need to worry about them.
e Eviction threshold: minimum value of a resource Kubelet should maintain
o Eviction-soft is hit: Kubelet starts reclaiming resource with Pod termination grace period as
min(eviction-max-pod-grace-period, pod.Spec.TerminationGracePeriod)
o Eviction-hard is hit: Kubelet starts reclaiming resources immediately, without grace period.

What you need to know about eviction?

e Your pod may get evicted when it uses more than its requested amount of a
resource and that resource is near being exhausted on a node
e Kubelet decides which pod to evict based on eviction score calculated from:
o Pod priority
o How much pod’s actual usage is above its requests
Caveat: currently not implemented for pid.

What you need to know about eviction?

e You can reduce your pod'’s risk of being evicted by:
o Set right requests for memory and ephemeral storage.
o Avoid using too much of other types of incompressible resources or increase
their node limits.
o Using higher priority.

What you need to know about eviction?

e When things go unexpected, check with cluster operator on the underlying
settings

o Kubelet or Docker run out of a resource: resource eviction signal and
threshold settings

o Frequently exhausts pids or inodes: Node sysctl setting

o Pod terminates too quickly: eviction max pod grace period setting

o Node oscillating on resource pressure (e.g., MemoryPressure, DiskPressure)
conditions: eviction pressure transition period setting

How memory limits are used at node

e Memory limits map to cgroup memory.limit_in_bytes
e (Container exceeding its memory limits will get OOM-killed

$ cat /sys/fs/cgroup/memory/kubepods/burstable/podxxx/memory.limit in bytes
134217728

S sudo tail —f /var/log/messages resources:

Oct 14 10:22:40 localhost kernel: sh invoked ocoom—killer: . .

S crFpliimask=0xc 0, N orders=0, comiscore Jaclij=0 11m1tS:

Oct 14 10:22:40 localhost kernel: sh cpuset=/ mems_allowed=0 memory: 128Mi
el AN T 22 O loedlhestENkerne 1 W ECRBUCONPT D268 7 Comin -

SShilRaSmEeclisaNG

@i seoseee e SISREIS 0 =S 2WES 610 SITie i/t a8 606 4 N

Oct 14 10:22:40 localhost kernel: Hardware name: innotek GmbH
VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
@ctitld g =224 0 Tocalhost ke rnells EEFES80036ea5c00

< 0000 08933140008 FE EEES 8000002 cd@ EEEREEEFSI1 6364 3
Ot AN T o 220408 Tocalheost kernel s EEFEFS88000002bd606
SEEFEFEFELFEF81 6231 3ce 0101 88000006000d0 EEEEF88000002bcl68
@atiga g =22 40 Tocalhost T kernells FEEFEEREEFbae35c040

S EFffece R FO00006000 0000000600 00000MH FEEREE80036cca 6l s
O ENEANO S 22 A0l ecalheos t ke Fne T Call S P race ©

OctE 14 1022 40 lTlocalhest kernel: [CEEEEREEERESIGS 6d 30—~
sdump stack+0x19/0x1b

Oet 14 10:222:40 localhost kexrnel: E=EEEREERERTeS I scc =l
sdump_ header+0x8e/0x214

GcE 48 10 222408 localhesENkerne it = S EF R ESTNM6d 2T e >
socom_kill process+0x24e/0x3b0

Oct 14 10:22:40 localhost kernel: [<KEffFfFfff£f81088e4de>] 2

“has capability nocaudit+0xle/0x30
Oct 14 10:22:40 localhost kerncel: s EFEREERES T 1 d4285 >

Why you may still see OOM killing without exceeding your limits

e OS can kick in before Kubelet is able to reclaim enough memory - OOM killing

e Under memory pressure, Linux kernel determines which process to kill based on
oom_score

e Today, Kubelet adjusts oom_score based on QoS class and memory requests:

©)

©)
©)
©)

Critical node components (Kubelet, Docker, etc): =999

Guaranteed Pod: -998

Best-effort Pod: 1000

Burstable Pod: between -998 to 1000, calculated based on memory
requests

What you need to know about OOM killing?

e OOM Kkilling is even worse than memory eviction
o You whole system may experience performance downgrade
o Application doesn't have chance to terminate gracefully

e You can reduce chance for your application being OOM Kkilled by:
o Setting right memory limits
o Reserve enough memory for your system components
o Don't accumulate too many dirty pages

Local ephemeral storage - Beta

e Local ephemeral: local root partition shared by
pods/containers and system components

apiVersion: vi1

.) kind: Pod
o Same lifetime as pods/containers spec:
o Container: writable layers, image layers, logs 202232?95?
o Pod: emtyDir volumes image: mysql
volumeMounts:

e Persistent: dedicated disks (remote or local) e el

o Explicit lifetime outlives containers/pods name: cache-volume
volumeMounts:

o Represented by PV/PVC

pod—

container

EmptyDir
Volume

Ephemeral storage

Persistent storage

- mountPath: /database
name: database-volume
volumes:
- name: cache-volume
emptyDir: {}
volumes:
- name: database-volume
persistentVolumeClaim:
claimName: task-pv-claim

How to set ephemeral storage resource requirements

apiVersion: vi

e Container level: can specify kind: Pod
_ metadata:
ephgmeral storage requests and b I
limits spec:
. . .. containers:
e Pod level: emptyDir sizeLimit - name: db
image: mysql
e Scheduler schedules a Pod to a FesoUrces-:
node if the sum of the requests: s
ephemeral-storage: "2Gi
ephemeral-storage requests from limits:
. . ephemeral-storage: "4Gi"
the scheduled containers is less volumeMounts:
) - mountPath: /cache
than the node’s allocatable Name: cache-volume
ephemeral-storage Vo LHmes:
- name: cache-volume
emptyDir:

sizelLimit: “10Gi”

Ephemeral storage eviction

e Under disk pressure, a pod can get evicted if:
o With LocalStorageCapacitylsolation enabled:
m It has a container whose ephemeral storage usage exceeds the
container’s limits
m [t has an emptyDir whose disk usage exceeds its sizeLimit
m) container's usage + Y emptyDir’ usage >) container’s limits
o It has highest eviction score calculated from:
m Priority
m How much pod’s actual usage is above its requests

Beyond basic use cases

e What if my app makes heavy use of disk 10?
o Provision enough 10 bandwidth and IOPs on your node
o Avoid running two 10 heavy Pods on the same node with Pod anti-affinity
o Consider to use dedicated disks/volumes
e What if my app is network latency sensitive or requires a lot network bandwidth?
o Use Pod anti-affinity to spread your pods to different nodes
o Can request high-performance NIC as extended resource
o but first make sure bottleneck is not on network switches

Beyond basic use cases

e What if my app is sensitive to CPU cache interference

o Use static CPU manager policy and request integer number of CPUs
e What if | want to run my workload on GPU?

o Can request GPU as extended resource, with requests == limits

o Better protect your GPU resource with taints & tolerations

Other things may affect your pod’s scheduling/running

e Priority and preemption
o Preempt lower priority pods to schedule higher priority pending pods
o Knob to make sure your high-priority workload have place to run.

e Resource Quota admission

e LimitRange

Resource admission control - how different teams share resources in a cluster

e Namespace
o Partition resources into logically named groups
o Ability to specify resource constraints for each group

- Capacity -

Capacity

namespace

Resource admission control - how different teams share resources in a cluster

Resource quota: specifies total
resource requests/limits for a
namespace
o Checked during pod creation
through API server admission

control:
m >Podrequests <= request
quota

m >Pod limit <= limit quota

apiVersion: vi1
kind: ResourceQuota
metadata:
name: demo
spec:
hard:
requests.cpu: 5
scopeSelector:
matchExpressions:
- operator: In
scopeName: PriorityClass
Values: [“low”]

Resource admission control - how different teams share resources in a cluster

e LimitRange

o Configures default requests apiVersion: vi
. kind: LimitRange
and limits for a namespace ,
o . metadata:
o Enforce minimum/maximum name: demo
pod/container resource spec:
requirements limits:
G i - default:
o Enforce a ratio between cpu: 560m
request and limit for a resource Memory: 966Mi
defaultRequest:
cpu: 166m

Memory: 100Mi
type: Container

Too many things to think about?

HARD WAY

Things that can make your life easier - Horizontal Pod Autoscaler (HPA)

e Automatically scale up/down pods in a ReplicaSet based on CPU utilization or
some metrics you defined
e Use HPA when
o You can load balance work among replicas
o Your pod’s resource usage is proportional to its work input
o Better to be combined with Cluster Autoscaler

Yo et Sl

%%&Automatlon

Things that can make your life easier - Cluster Autoscaler (CA)

e Add more nodes to run pending pods or scale down node after your job finishes
e Use CA if nodes can be dynamically created in your k8s cluster

Q m *

%%%Automatlon

Things that can make your life easier - Vertical Pod Autoscaler (VPA)

e Measures and/or sets resource requests for you.
e Consider VPA if your application's resource requirements change over time
e Bearing in mind some of its features are still experimental

“"‘ ey

%%%Automatlon

Set CPU requests to reserve CPU time your pod needs. Use CPU limits with care.
Sets correct memory requests/limits to avoid memory eviction and/or OOM.
Prevents your nodes from running out of disk with ephemeral storage
requests/limits and emptyDir sizeLimit.

Avoid exhausting incompressible resources.

If your pod uses a lot 10 or network, try to provision enough or not share them.
Understand your cluster admin setting to avoid surprise.

You can request GPU as extended resource.

Use autoscalers if possible to make your life easier.

We still have a LONG way to go

Evolving

Kubernetes Resource
Management
Model

