
Fitter, Happier,
More Productive.
Removing Friction in the Developer
Experience

Q-Con New York, June 27th 2017

Ade Trenaman, SVP Engineering, HBC Digital
t: @adrian_trenaman

http://tech.gilt.com

t: @hbcdigital fa: @hbcdigital in: hbc_digital

What are you doing
while in the US?

I’m speaking a
software conference.

Sir.

What’s your official
title?

I’m SVP Engineering
at Hudson’s Bay Co.

What’s your talk
about?

Ummm.

Improving the way we
do software
engineering.

So, how do you do that?

<fear induced pause>

Provide unfettered access to cloud
computing resources and remove all
things that block engineers from getting
software to production.

It’s hard, huh, all that red tape and
bureaucracy?

Yup.

Well, hope you solve it! :)
Welcome to America.

minimise the distance between
“hello, world” and production.

scala> println ("hello, world.")
hello, world.

production

minimise the distance between
a good idea and production.

productiona good idea

For great dev-ex:

“... build an organisation and
architecture that allows you
to deploy change frequently,
swiftly and safely to
production, and own the
impact of that change”

Laptop. Wifi. VPN. Seat.
Standing Desk. Screen.

Warmth. Light.

Fuzbol. Beanbags.
Free-food.
Pet-creche.

Self
Actualise:
Get stuff
done and
have cool

stories that
impress your

friends.

Perks.

Basics. You must have
these.

This is the most important thing.

DEVELOPER HIERARCHY OF NEEDS

code first
Teams: 5±2 in size
Departments: 20±4

#leadersnotmanagers
#leaderswhocode: 85%, 60%, 15%

IC & Lead tracks
#devops

#ownership
#opensource

SAY “AUTONOMY, MASTERY, PURPOSE”

ONE MORE TIME

M

ᶊ

G

FApplied

Friction*

* reactive force resisting motion

… motivation: autonomy, mastery,
purpose

The change we want to make...

… work is hard.

… all the things that slow
us down or block us.

f : Staging/Testing Environments

Prefer to test in production. #srsly

Dev, QA & Test environments are high-friction places to
write code.

PROD

DEVDEVDEV

DEVDEVDEV

DEVDEVDEV

QA

QA

QA PRE
PROD

Lack of Flow, Excessive Bending, Kneeling,
Reaching

Increased Waste = Lower Productivity, Safety
Opportunities

Borrowing from
lean / six-sigma

MOTION STUDY – “SPAGHETTI DIAGRAMS”

Spaghetti Diagrams make poor layouts
and wasted motion obvious

Spaghetti diagram of movement and handover within the software
delivery process.

PROD

DEVDEVDEV

DEVDEVDEV

DEVDEVDEV

QA

QA

QA PRE
PROD

Overproduction
▪ Encourages fewer ‘big

bang’ releases Waiting
▪ Can’t get my stuff

deployed

Motion
▪ Commit deploy test

commit deploy test
commit deploy test...

Transportation
▪ Multiple handoffs

between Engineers,
QA & Ops

Inventory
▪ Lots of commits held up

in the pipeline.

Rework
▪ Works in one

environment, not in
another

Overprocessing
▪ Tickets tested and

rested in different
environments.

Intellect
▪ Spending time building

and debugging
environments instead
of adding value

Muda - “Waste” in
the software
software delivery
process

Prod

Core idea #1: test in prod with dark canaries, canaries, release, roll-back.

Dark Canary
1.0.0

Instance_0
1.0.0

Instance_1
1.0.0

Instance_n
1.0.0

Dark Canary
1.0.1

Canary
1.0.1

Instance_0
1.0.1

Instance_1
1.0.1

Instance_2
1.0.1

github.com/gilt/nova- deployment patterns

Instance_0 - v1.0.0

Instance_1 - v1.0.0

Instance_2 - v1.0.0

Live Traffic

Instance_3 - v1.0.0 Canary

Instance_4 - v1.0.0 Dark
Canary

Elastic Load
Balancer (ELB)

http://hello-world-nova.common.giltaws.com

Elastic Load
Balancer (ELB)

http://hello-world-nova-dark.common.giltaws.com

github.com/gilt/nova - creating environments

nova.yml

templates

$> nova stack create production

CloudFormation

CodeDeploy

github.com/gilt/nova- deployment

Instance_0 - v1.0.0

Instance_1 - v1.0.0

Instance_2 - v1.0.0

Live Traffic

Instance_3 - v1.0.0 Canary

Instance_4 - v1.0.0 Dark
Canary

Elastic Load
Balancer (ELB)

live

Elastic Load
Balancer (ELB)

dark

$> nova deploy common DarkCanary
1.0.1

Instance_4 - v1.0.1

$> nova deploy common Canary 1.0.1

Instance_3 - v1.0.1

$> nova deploy common Production
1.0.1

Instance_0 - v1.0.1

Instance_1 - v1.0.1

Instance_2 - v1.0.1

CodeDeployS3bundle

Core idea #2: your teams are startups providing services
to other development teams

prod

contract

sandbox

Core idea #3: exploit multi-tenant design for confident
testing in production

api-brand-favapi-brand-favapi-brand-fav api-brand-fav

dark canary

https://...hbc.com/saks/favourites/...

https://...hbc.com/bay/favourites/...
https://...hbc.com/test/favourites/...

Core idea #4: give your teams secure, unfettered control
over their own infrastructure. Segregate and apply
command-and-control where you need it most.

Master AWS Account

Web & Shared Services

ML & Algos Mobile
Services

Data

INFRA

f : Forced technology choices.

Prefer voluntary adoption.

adopt

hold

trial

assess

std.

https://github.com/gilt/standards

CodeDeploy

Docker

CodePipeline

ION Roller

ECS

sbt-code-deploy

AWS
Lamda

Docker Hub
(Open Source)

CloudFormation

NOVA

ECR

Philosophical note: choose your abstractions &
frameworks carefully.

adoption by rule
centralised

uniform
efficient

go

voluntary adoption
decentralised

diverse
effective

Scala, Java,
Ruby, Swift, JS,

Node, ...

Steer towards classroom size
consensus

f : Fear of Breaking All The Things
Adopt µ-services. Adopt λ.

Maximize code-to-cruft-ratio.

A minimalist abstraction of our architectural evolution

2007
Monolith

2010
Service
Oriented

2012
µ-Services

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

2016
Rise of λ

Lots of Small Apps (LOSA) - AKA “micro-frontends”.

<<monolith>>
swift:jsp

<<traffic manager>>
:zxtm

~15 more small, simple,
isolated web apps that
share the same look
and feel.

I hear ya.

We have marketing URLs like:
https://gilt.com/loveaws

We need to look up the slug ‘loveaws’ and
change that to a ‘pkey’ for our login, so we can
redirect with 302 to:

https://gilt.com/login?pkey=loveaws&...

Existing solution routed to legacy Ruby on Rails
app:

● not scalable.
● not ‘symmetric’

A small-but-important problem: marketing redirects

Rails

Postgres

Zeus

:(customer-facing
traffic on Rails :(

http://gilt.com/loveaws
http://gilt.com/loveaws
https://gilt.com/login?pkey=loveaws&
https://gilt.com/login?pkey=loveaws&

λ-based solution
Replace with solution using API-Gateway +
Lambda + KMS

● 3/80 LOC (cruft/code) .js
● KMS used for encrypted DB credentials
● Response cached
● No longer hits Rails! λ

Postgres

Zeus

Tiny λ

API
Gateway

It’s just code.

f : Forced team choices.

Prefer self-selection.

Self Selection
Product Mgr, Tech Lead &

Project Mgr ‘pitch’ to engineers.

“I love the team
I’m on right

now!”
Imagine the power of a

fully-aligned team who want to
work together.

f : Distractions.
Reinforce the notion that coding is the

primary activity.

RED HOT ENGINEER

Work your meetings
5@4 (~3w, by location)
Tech Huddle (weekly, by location)
All Hands (monthly, global)
Team KPI meetings: 2-4 weeks
Quality Review
Team meetings? Up to them.

Ask: “was this meeting valuable?
should we meet again?”

~ 2.75 - 5 hrs a week

Measure It.

POps Mission
To build and maintain the best
product development teams in the
world through establishing the
models around how we staff and
organize our teams, how we plan
and execute our work, and how we
develop our people and our
culture.

Reduce the Friction in the
Employee Experience!

Team Health Check - Trends Baseline
9/27/2016

Current
11/23/2016

#thanks @adrian_trenaman @gilttech @hbcdigital

Seek out and remove friction in your engineering process.

Give freedom-of-choice & freedom-of-movement to your engineers.

Code is the primary artifact.

Minimize the distance between “hello, world” and prod.

Overproduction
▪ Routinely exceed

customer needs
("gold-plating")

▪ Exceeding scope of
SLAs

Waiting
▪ Idle time during

automated program
runs

▪ Waiting between
assignments

Motion
▪ Interruptions leading to

context switching,
mental motion

▪ Lack of or sub-optimal
Standard Operating
Procedures (SOP)

Transportation
▪ Multiple handoffs of

incidents, changes
▪ Sub-optimal dispatch

and routing
▪ Insufficient use of

remote diagnosis

Inventory
▪ Large number of

servers due to a low
server utilization

▪ System-generated
alerts clogging ticket
queues

Rework
▪ Misrouted tickets
▪ Inadequate testing

before
production

▪ Poor
change-window
planning

Overprocessing
▪ Unnecessary system

replacement,
patching

▪ Backup/defrag runs
earlier than needed

▪ Excessive
documentation

Intellect
▪ Mismatched work

functions with skill sets
▪ Lack of best prac-

tice sharing across
groups

Muda - “Waste” in
manufacturing
process

