The State of Serverless Computing
or, Fixing Dysfunction-as-a-Service

Chenggang Wu
RISE Lab, UC Berkeley
QCon New York 06/24/2019

UC Berkeley: CS 61A
Fall 2018

The State of Serverless Computing
QCon New York 06/24/2019

Berkeley
Division of
Data Sciences

of Serverless Computing
on New York 06/24/2019

Making Programmers Productive

Key Question: Where will code be run? In the !

The State of Serverless Computing
QCon New York 06/24/2019

Background: Serverless Computing

The State of Serverless Computing
QCon New York 06/24/2019

What is serverless computing?

Serverless computing is a programming abstraction that enables users to
upload programs, run them at any scale, and pay only for resources used.

The State of Serverless Computing
QCon New York 06/24/2019

Functions-as-a-Service (FaaS)

« AWS Lambda, Google Cloud Functions, OpenWhisk (IBM), Azure
Functions, OpenLambda, OpenFaa$S, kNative...

* Optimized for simplicity — register functions, enable triggers, and scale
transparently

Function code info

Code entry type

Edit code inline

Runtime

v Python 3.6

¢» lambda_function.py

impo

Environment

1mpo

impo

cliel
tabl
9 cand
10 THRE

NV A WN

12 def

import

File Edit Find View Go Tools Window

v [election H- B lambda_function

rt boto3
rt pickle
random
rt time

nt = boto3.resource('dynamodb')

e = client.Table('vsreekanti')
idates = client.Table('candidates')
SHOLD = 50

main(thisid):

print("My invocation's id is: " + thisid)
thisid = int(thisid)

vote_round_count = @

am_leader = False

while True:
time.sleep(.25)

Add triggers
Choose a trigger from the list below

to add it to your function.

AP| Gateway

AWS loT Add triggers from the list on the left
Alexa Skills Kit

Alexa Smart Home

Application Load Balancer

CloudFront
The State of Serverless Computing

QCon New York 06/24/2019

Academic Interest in Serverless

Occupy the Cloud: Distrit

Eric Jonas, Qifan Pu, Shivaram Ve
University of ¢
{jonas, gifan, shivaram, istc

ABSTRACT

Distributed computing remains inaccessible to a large number of
users, in spite of many open source platforms and extensive com
mercial offerings. While distributed computation frameworks have
moved beyond a simple map-reduce model, many users are still
left to struggle with complex cluster management and configuration
tools, even for running simple embarrassingly parallel jobs. We argue
that stateless functions represent a viable platform for these users
eliminating cluster management overhead, fulfilling the promise
of elasticity. Furthermore, using our prototype implementation, Py
Wren, we show that this model is general enough to implement a
number of distributed commutina madale cnch ac RAP afficiantly
Extrapolating from recen

enordgregedsor. 4 j pRish_cats 4 months ago | parent | favorite | on: Serverless Computing: One Step Forward, Two Steps ...

a natural fit for data proce

CCS CONCEPTS

« Computer systems org
puting methodologies —

KEYWORDS
Serverless, Distributed Computing, AWS Lambda, PyWren

ACM Reference Format:

Eric Jonas, Qifan Pu, Shivaram Venk Ion Stoica,
Recht University of California, Berkeley {jonas, gifan, shivaram, istoica
brecht} @eecs.berkeley.edu. 2017. Occupy the Cloud: Distributed Computing
for the 99%. In Proceedings of SoCC ’17, Santa Clara, CA, USA, September
24-27, 2017, 7 pages.

https://doi.org/10.1145/3127479.3128601

1 INTRODUCTION

Despite a decade of availability, the twin promises of scale and elas
ticity [2] remain out of reach for a large number of cloud computing
users. Academic and commercially-successful platforms (Apache
Hadoop, Apache Spark) with tremendous corporate backing (Ama
zon, Microsoft, Google) still present high barriers to entry for the
average data scientist or scientific computing user. In fact, taking
advantage of elasticity remains challenging for even sophisticated
users, as the majority of these frameworks were designed to first

Permission to make digital or hard copies of all or part of this work for personal o1
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, o1
republish, to post on servers or to redistribute to lists, requires prior specific permissior
and/or a fee. Request permissions from permissions @acm.org,

SoCC '17, September 24-27, 2017, Santa Clara, CA, USA

©2017 Copyright held by the owner/author(s). Publication rights licensed to Associatior
for Computing Machinery.

ACM ISBN 978-1-45 028-0/17/09. .. $15.00

Encoding, Fa
Low-Latency Video Processing U

Sadjad Fouladi %, Riad S. Wa
Karthikeyan Vasuki Balasubramaniam
Anirudh Sivaraman Iii, Georg

Stanford University 8, University of California San 1
Abstract

We describe ExCamera, a system that can edit, transform,
and encode a video, including 4K and VR material, with
low latency. The system makes two major contributions.
First, we designed a framework to run general-purpose
parallel computations on a commercial “cloud function”
service. The system starts up thousands of threads in
seconds and manages inter-thread communication.

The pace of data analysis and processing has advanced
rapidly, enabling new applications over large data sets.
Providers use data-parallel frameworks such as MapRe-
duce [8], Hadoop [12], and Spark [32] to analyze a variety
of data streams: click logs, user ratings, medical records,
sensor histories, error logs, and financial transactions.

Yet video, the largest source of data transiting the In-
ternet [6], has proved one of the most vexing to analyze
and manipulate. Users increasingly seek to apply com-
plex computational pipelines to video content. Examples
include video editing, scene understanding, object recog-
nition and classification, and compositing. Today, these
jobs often take hours, even for a short movie.

There are several reasons that interactive video-
processing applications have yet to arrive. First, video
jobs take a lot of CPU. In formats like 4K or virtual
reality, an hour of video will typically take more than
30 CPU-hours to process. A user who desires results in a
few seconds would need to invoke thousands of threads
of execution—even assuming the job can be parallelized
into thousands of pieces.

Second, existing video encoders do not permit fine-
grained parallelism. Video is generally stored in com-
pressed format, but unlike the per-record compression
used by data-parallel frameworks [2], video compres-

Cloud Prog
A Berkeley View

Eric Jonas Johann Schl

Anurag Khandelwal Qifan
Karl Krauth Neeraja Ye
Ton St

server

PAVALIUU ULIUOU 10000 GUU DULYEIIL GUI VLA

computing.

Contents

Introduction to Serverless Com

Emergence of Serverless Compt
[2.1 " Contextualizing Serverless Con
[2.27 Attractiveness of Serverless Co

Limitations of Today’s Serverle:
[3.1 Tnadequate storage for fine-gra
3.2 Lack of fine-grained coordinatis
3.3 Poor performance for standard
[3.4" Predictable Performance . . .

What Serverless Computing Sh
[4.1 Abstraction challenges

[4.2 System challenges
[4.3 Networking challenges
4.4 Security challenges
4.5 Computer architecture challeng

Fallacies and Pitfalls

Serverless Compt

Joseph M. Hellerstein, Jose Fa

{hellerstein,jmfa

ABSTRACT

Serverless computing offers the potential tc
an autoscaling, pay-as-you go manner. In |
critical gaps in first-generation serverless cc
its autoscaling potential at odds with domir
computing: notably data-centric and distri
also open source and custom hardware. Pu
make current serverless offerings a bad fit
and particularly bad for data systems inno
pinpointing some of the main shortfalls of
chitectures, we raise a set of challenges wx

avauapie 10 e general puplic, managea as

Despite that potential, we have yet to ha
in radical ways. The cloud today is largely v
platform for standard enterprise data servic
creative developers need programming fre
them to leverage the cloud’s power.

New computing platforms have typically
programming languages and environments
is difficult to identify the new programming
cloud. And whether cause or effect, the res
in practice: the majority of cloud services ar
easier-to-administer clones of legacy entery
object storage, databases, queueing systems
Multitenancy and administrative simplicity a
able goals, and some of the new services hay
in their own right. But this is, at best, only
offered by millions of cores and exabytes of

Recently, public cloud vendors have beg
gramming interfaces under the banner of ser
interest is growing. Google search trends sh¢
term “serverless” recently matched the histc
of the phrase “Map Reduce” or “MapReduce
also been a significant uptick in attention to t
from the research community [13, 6, 27, 14].

This article is published under a Creative Com
(http://creativecommons.org/licenses/by/3.0/), which pe
duction inany medium as well as allowing derivative work
the original work to the author(s) and CIDR 2019.

Peeking Behind the Curtains of Serverless Platforms

Liang Wang !, Mengyuan Li 2, Yingian Zhang 2, Thomas Ristenpart’, Michael Swift!

IUW-Madison, 2Ohio State University, 3Cornell Tech

Abstract

Serverless computing is an emerging paradigm in which
an application’s resource provisioning and scaling are
managed by third-party services. Examples include
AWS Lambda, Azure Functions, and Google Cloud
Functions. Behind these services’ easy-to-use APIs
are opaque, complex infrastructure and management
ecosystems. Taking on the viewpoint of a serverless

Oh look a bunch of academics telling developers how to do their job, again.

with highlights including that AWS Lambda adopts
a bin-packing-like strategy to maximize VM memory
utilization, that severe contention between functions can
arise in AWS and Azure, and that Google had bugs that
allow customers to use resources for free.

1 Introduction

Cloud computing has allowed backend infrastructure
maintenance to become increasingly decoupled from
application development. ~ Serverless computing (or
function-as-a-service, FaaS) is an emerging application
deployment architecture that completely hides server
management from tenants (hence the name). Tenants
receive minimal access to an application’s runtime
configuration. This allows tenants to focus on developing
their functions — small applications dedicated to specific
tasks. A function usually executes in a dedicated function
instance (a container or other kind of sandbox) with
restricted resources such as CPU time and memory.
Unlike virtual machines (VMs) in more traditional
infrastructure-as-a-service (IaaS) platforms, a function
instance will be launched only when the function is
invoked and is put to sleep immediately after handling
arequest. Tenants are charged on a per-invocation basis,
without paying for unused and idle resources.

Serverless computing originated as a design pattern
for handling low duty-cycle workloads, such as process-
ing in response to infrequent changes to files stored on
the cloud. Now itis used as a simple programming model
for a variety of applications [14,22,42]. Hiding resource
management from tenants enables this programming
model, but the resulting opacity hinders adoption for
many potential users, who have expressed concerns
ahont: cecnritv in terme of the quality of isolation,
23,35,37,40]; the need to
ient to improve application
28, 40]; and the ability
performance [10-12, 29—
.en made to shed light on
ent and security [33, 34],
es, as we will show, fail to

We therefore perform the most in-depth study of
resource management and performance isolation to
date in three popular serverless computing providers:
AWS Lambda, Azure Functions, and Google Cloud
Functions (GCF). We first use measurement-driven
approaches to partially reverse-engineer the architectures
of Lambda and Azure Functions, uncovering many
undocumented details. Then, we systematically examine
a series of issues related to resource management: how
quickly function instances can be launched, function
instance placement strategies, function instance reuse,
and more. Several security issues are identified and
discussed.! We further explore how CPU, /O and
network bandwidth are allocated among functions and
the ensuing performance implications. Last but not least,
we explore whether all resources are properly accounted
for, and report on two resource accounting bugs that
allow tenants to use extra resources for free. Some
highlights of our results include:

e AWS Lambda achieved the best scalability and
the lowest coldstart latency (the time to provision
a new function instance), followed by GCE. But

'We responsibly disclosed our findings to related parties before this
paper was made public.

Industrial Interest in Serverless

Engines*

Aavrooesk mlbam®Y NETFLIX

What is FaaS good

JO
JO
JO
JO

Embarrassingly parallel tasks

at today?

Tailor Architecture Design

c—H—%—0 =04 =10
ADSK S—— talr-cla-request. tair-cla-response
raal Request Form POST. o tair-receptionist o tarcla cresteAccount] ai-director

User

nnnnn

Legend
o2 apiGateway AWS Lambda function Sss AWS SNS B AWS Cloudformation Stack
WY e Proxy - Application Logic == - hsynchror cation SEE - Discreat templated provisioning
AWS Organizations ~ s A\ DB Table o AW % Awsss
Cumentasof WedSep272017 | W -CLAARI I= " Datastore B Cutbound Emai | % i

Workflow orchestration

The State of Serverless Computing
QCon New York 06/24/2019

\

Wait! What about..

)
‘V There are other serverless services, too!

* e.g., Google Cloud Dataflow, AWS Athena,

Snowflake...
e Often referred to as Backend-as-a-Service
E (BaaS)

We're primarily interested in generality.

Limitations on FaaS Today

oD
Limited execution lifetimes

m No inbound network connections
N

(b O is a bottleneck

No specialized hardware

O’(<
But that’s“\okay: Everything is‘ﬁ%nctional!

* Functional programs don’t have side effects or mutable state!

I\= Haskel

AWS Lambda
e And it is called AWS Lambda

The State of Serverless Computing
QCon New York 06/24/2019

Dysfunction-as-a-Service

* FaaS is not designed for functional programming because real
applications share state

) fu: :[m): :[m:
f(g(x)) EE_\{I \ :

* FaaS is poorly suited for all of these

The State of Serverless Computing
QCon New York 06/24/2019

Quantifying The Pain of FaaS

How Faa$S Disappoints Famous Computer Scientists

The State of Serverless Computing
QCon New York 06/24/2019

Even Functional Programming is Slow!

f(g(x))

Lambda Lambda Lambda AWS
(S3) (Dynamo) (Direct) Step FNs

Median and 99t percentile latencies for composing two
arithmetic functions on AWS Lambda.

The State of Serverless Computing
QCon New York 06/24/2019

Even Functional Programming is Slow!

f(g(x))

—~

Latency (ms

1000

100

10

Lambda Lambda Lambda
(S3) (Dynamo) (Direct)

AWS
Step FNs

Median and 99t percentile latencies for composing two

arithmetic functions on AWS Lambda.

The State of Serverless Computing
QCon New York 06/24/2019

Even Functional Programming is Slow!

1000

100

-
)

Latency (ms)

737 573

Lambda Lambda Lambda
(S3) (Dynamo) (Direct)

arithmetic functions on AWS Lambda.

3346

AWS
Step Fns

Median and 99t percentile latencies for composing two

The State of Serverless Computing
QCon New York 06/24/2019

Shared Mutable State

M Serverless Storage

L ‘.‘ =9

Autoscaling Low Latency

/\@660

(In)Consistency Guarantees

oo

Shared
Counter

The State of Serverless Computing
QCon New York 06/24/2019

No Inbound Network Connections

Wy

Enables Process Easy Fault
Migration Tolerance

Indirect Communication

@ Write Read

The State of Serverless Computing
QCon New York 06/24/2019

+—

qv
-
o+
.m
Y

A Platform for Stateful Serverless
Computing

The State of Serverless Computing
QCon New York 06/24/2019

Background: Anna

* High performance across orders of magnitude in scale
v 10x faster than Redis/Cassandra in a geo-distributed deployment

» Autoscaling & cost-efficient
v' 500x faster than Amazon DynamoDB for the same cost

(a) High contention (zipf coefficient = 4)
\ I I I

|
350 M [-Anna (full replication) —&H—
Anna (rep = 3)

o
@
g 300 M Anna (rep = 1) — n
S 250M oal ——
Z Som — 5 40M | | . [4500 G
= —
B SOM| g e s s s s asesassss 2 3.0 M MRy 3500 ¢
E oM > —x B |
0 5 10 15 20 25 30 35 L 25M 3000 g
number of threads ‘(5:'_ 20M | —2500 I
o . c 15M| ' -12000 —
R (b) Low contention (zipf coefficient = 0.5) [o)) —+ | A——+ >
§ 40 M Anna (fullheplication& - ! I T] 8 10 M B 7 1500 8
G BOMp Ametecd i S 05M <1000 @
g 30M BB —%— x] = | | | | [cu
S 25M ideal —+— x . = 0O0M 500 3
S 20M vessioo 8= ! o 5 10 15 20 25 30
< .
g Time (s)
c 2 -
[= - —| = =
0 5 10 15 2 25 30 35
number of threads
Chenggang Wau, Jose Faleiro, Yihan Lin, and Joseph M. Hellerstein. "Anna: A KVS for Any Scale." IEEE Transactions on Knowledge and Data Engineering (2019). The State of Serverless Computing

Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. "Autoscaling Tiered Cloud Storage in Anna." Proceedings of the VLDB Endowment 12, no. 6 (2019): 624-638. QCon New York 06/24/2019

Fluent; FaaS-over-Anna

* Maintain disaggregation of compute & state
 Make serverless a viable option for stateful applications
* Use Anna for both storage and communication

The State of Serverless Computing
QCon New York 06/24/2019

Fluent; FaaS-over-Anna

Network
Boundary

The State of Serverless Computing
QCon New York 06/24/2019

Logical disaggregation with
physical colocation

Fluent; FaaS-over-Anna

Network
Boundary

The State of Serverless Computing
QCon New York 06/24/2019

Key |dea: Caching

* Enable low-latency data access by caching data close to code
execution

« Communication (and composition) is achieved via a fast-path on top of
KVS puts and gets

Challenge: Cache Consistency

* tl;dr: we can provide a variety of coordination-avoiding consistency
modes — which is better than S3 or DynamoDB!

* This is done by encapsulating program state in lattices

The State of Serverless Computing
QCon New York 06/24/2019

| attice

» Data structure that accepts incoming update in a way that is
associative, commutative, and idempotent (ACI).

* Achieves eventual replica convergence

The State of Serverless Computing
QCon New York 06/24/2019

Causal Consistency

» Strongest consistency level that doesn’t require coordination

* Causally-related updates will be revealed in an order that respects
causality

 |n addition, guarantee

* Repeatable read
« Atomic visibility Cause 1] Cause 2

Cause 3 § Cause 4

The State of Serverless Computing
QCon New York 06/24/2019

Function Composition, Revisited

f(g(x))

Fluent Lambda Lambda Lambda AWS
(S3) (Dynamo) (Direct) Step Fns
Median and 99t percentile latencies for composing two
arithmetic functions on AWS Lambda and Fluent.

The State of Serverless Computing
QCon New York 06/24/2019

Case Study: Prediction Serving

The State of Serverless Computing
QCon New York 06/24/2019

Prediction Serving

* Generate predictions from pretrained machine learning models

Model
Replica

Join with Model
Reference Data Replica

Clean Input

Model
Replica

» At first blush, a great fit for serverless infrastructure

The State of Serverless Computing
QCon New York 06/24/2019

Amazon Sagemaker

ottith, | [temeset) [cnsporens |

737 FLIGHT
S’WJT’OH

P 'NEWITH
A} SAGEMAKER

The State of Serverless Computing
QCon New York 06/24/2019

Background: SqueezeNet

« State-of-the-art image classification model (developed at Berkeley!)

el

T

—
——

'/
INPUT
\

— CAR
— TRUCK
— VAN

— =
\\ i D EI — BICYCLE
CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN co:}’;g“b SOFTMAX
& & s 3
FEATURE LEARNING CLASSIFICATION

The State of Serverless Computing
QCon New York 06/24/2019

Prediction Serving

361.7

Fluent Python AWS
SageMaker

Median and 99t percentile latencies for SqueezeNet on
Fluent and AWS SageMaker.

The State of Serverless Computing
QCon New York 06/24/2019

The Future of Cloud Programming

The State of Serverless Computing
QCon New York 06/24/2019

Looking Back: Disappointed Computer
Scientists

* Functional programming is slow
« Communication through slow storage

* Poor consistency guarantees

The State of Serverless Computing
QCon New York 06/24/2019

Making FaaS Functional
* Embrace state

* Easy things become better

 Hard things become easy

A step on our road towards a programmable cloud.

The State of Serverless Computing
QCon New York 06/24/2019

Our Vision

» Serverless will change the way that we write software and the way
that programming infrastructure works

* Cloud-native programming models
* Enable users to take advantage of millions of cores and petabytes of RAM

/.\"'

Moving Forward from FaaS

/>

Building
Developer
Tools

The State of Serverless Computing
QCon New York 06/24/2019

UC Berkeley: CS 61A
Fall 2018

The State of Serverless Computing
QCon New York 06/24/2019

Moving Forward from FaaS

Building Developing
Developer Autoscaling
Tools Policy

The State of Serverless Computing
QCon New York 06/24/2019

Moving Forward from FaaS

</ 7

Building Developing
Developer Autoscaling
Tools Policy

%
Designing
SLOs & SLAs

Thanks!

@cegwu0530 cewu@berkeley.edu fluent-project/fluent

The State of Serverless Computing
QCon New York 06/24/2019

