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Making Programmers Productive

Key Question: Where will code be run? In the !
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Background: Serverless Computing
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What is serverless computing?

Serverless computing is a programming abstraction that enables users to
upload programs, run them at any scale, and pay only for resources used.
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Functions-as-a-Service (FaaS)

« AWS Lambda, Google Cloud Functions, OpenWhisk (IBM), Azure
Functions, OpenLambda, OpenFaa$S, kNative...

* Optimized for simplicity — register functions, enable triggers, and scale
transparently

Function code info

Code entry type

Edit code inline

Runtime
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File Edit Find View Go Tools Window

v [ election H- B lambda_function

rt boto3
rt pickle
random
rt time

nt = boto3.resource('dynamodb')

e = client.Table('vsreekanti')
idates = client.Table('candidates')
SHOLD = 50

main(thisid):

print("My invocation's id is: " + thisid)
thisid = int(thisid)

vote_round_count = @

am_leader = False

while True:
time.sleep(.25)

Add triggers
Choose a trigger from the list below

to add it to your function.

AP| Gateway

AWS loT Add triggers from the list on the left
Alexa Skills Kit

Alexa Smart Home

Application Load Balancer

CloudFront
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Academic Interest in Serverless

Occupy the Cloud: Distrit

Eric Jonas, Qifan Pu, Shivaram Ve
University of ¢
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ABSTRACT

Distributed computing remains inaccessible to a large number of
users, in spite of many open source platforms and extensive com
mercial offerings. While distributed computation frameworks have
moved beyond a simple map-reduce model, many users are still
left to struggle with complex cluster management and configuration
tools, even for running simple embarrassingly parallel jobs. We argue
that stateless functions represent a viable platform for these users
eliminating cluster management overhead, fulfilling the promise
of elasticity. Furthermore, using our prototype implementation, Py
Wren, we show that this model is general enough to implement a
number of distributed commutina madale cnch ac RAP afficiantly
Extrapolating from recen

enordgregedsor. 4 j pRish_cats 4 months ago | parent | favorite | on: Serverless Computing: One Step Forward, Two Steps ...
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1 INTRODUCTION

Despite a decade of availability, the twin promises of scale and elas
ticity [2] remain out of reach for a large number of cloud computing
users. Academic and commercially-successful platforms (Apache
Hadoop, Apache Spark) with tremendous corporate backing (Ama
zon, Microsoft, Google) still present high barriers to entry for the
average data scientist or scientific computing user. In fact, taking
advantage of elasticity remains challenging for even sophisticated
users, as the majority of these frameworks were designed to first
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republish, to post on servers or to redistribute to lists, requires prior specific permissior
and/or a fee. Request permissions from permissions @acm.org,
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©2017 Copyright held by the owner/author(s). Publication rights licensed to Associatior
for Computing Machinery.
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Abstract

We describe ExCamera, a system that can edit, transform,
and encode a video, including 4K and VR material, with
low latency. The system makes two major contributions.
First, we designed a framework to run general-purpose
parallel computations on a commercial “cloud function”
service. The system starts up thousands of threads in
seconds and manages inter-thread communication.

The pace of data analysis and processing has advanced
rapidly, enabling new applications over large data sets.
Providers use data-parallel frameworks such as MapRe-
duce [8], Hadoop [12], and Spark [32] to analyze a variety
of data streams: click logs, user ratings, medical records,
sensor histories, error logs, and financial transactions.

Yet video, the largest source of data transiting the In-
ternet [6], has proved one of the most vexing to analyze
and manipulate. Users increasingly seek to apply com-
plex computational pipelines to video content. Examples
include video editing, scene understanding, object recog-
nition and classification, and compositing. Today, these
jobs often take hours, even for a short movie.

There are several reasons that interactive video-
processing applications have yet to arrive. First, video
jobs take a lot of CPU. In formats like 4K or virtual
reality, an hour of video will typically take more than
30 CPU-hours to process. A user who desires results in a
few seconds would need to invoke thousands of threads
of execution—even assuming the job can be parallelized
into thousands of pieces.

Second, existing video encoders do not permit fine-
grained parallelism. Video is generally stored in com-
pressed format, but unlike the per-record compression
used by data-parallel frameworks [2], video compres-
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ABSTRACT

Serverless computing offers the potential tc
an autoscaling, pay-as-you go manner. In |
critical gaps in first-generation serverless cc
its autoscaling potential at odds with domir
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Peeking Behind the Curtains of Serverless Platforms

Liang Wang !, Mengyuan Li 2, Yingian Zhang 2, Thomas Ristenpart’, Michael Swift!

IUW-Madison, 2Ohio State University, 3Cornell Tech

Abstract

Serverless computing is an emerging paradigm in which
an application’s resource provisioning and scaling are
managed by third-party services. Examples include
AWS Lambda, Azure Functions, and Google Cloud
Functions. Behind these services’ easy-to-use APIs
are opaque, complex infrastructure and management
ecosystems. Taking on the viewpoint of a serverless

Oh look a bunch of academics telling developers how to do their job, again.

with highlights including that AWS Lambda adopts
a bin-packing-like strategy to maximize VM memory
utilization, that severe contention between functions can
arise in AWS and Azure, and that Google had bugs that
allow customers to use resources for free.

1 Introduction

Cloud computing has allowed backend infrastructure
maintenance to become increasingly decoupled from
application development. ~ Serverless computing (or
function-as-a-service, FaaS) is an emerging application
deployment architecture that completely hides server
management from tenants (hence the name). Tenants
receive minimal access to an application’s runtime
configuration. This allows tenants to focus on developing
their functions — small applications dedicated to specific
tasks. A function usually executes in a dedicated function
instance (a container or other kind of sandbox) with
restricted resources such as CPU time and memory.
Unlike virtual machines (VMs) in more traditional
infrastructure-as-a-service (IaaS) platforms, a function
instance will be launched only when the function is
invoked and is put to sleep immediately after handling
arequest. Tenants are charged on a per-invocation basis,
without paying for unused and idle resources.

Serverless computing originated as a design pattern
for handling low duty-cycle workloads, such as process-
ing in response to infrequent changes to files stored on
the cloud. Now itis used as a simple programming model
for a variety of applications [14,22,42]. Hiding resource
management from tenants enables this programming
model, but the resulting opacity hinders adoption for
many potential users, who have expressed concerns
ahont:  cecnritv in terme of the quality of isolation,
23,35,37,40]; the need to
ient to improve application
28, 40]; and the ability
performance [10-12, 29—
.en made to shed light on
ent and security [33, 34],
es, as we will show, fail to

We therefore perform the most in-depth study of
resource management and performance isolation to
date in three popular serverless computing providers:
AWS Lambda, Azure Functions, and Google Cloud
Functions (GCF). We first use measurement-driven
approaches to partially reverse-engineer the architectures
of Lambda and Azure Functions, uncovering many
undocumented details. Then, we systematically examine
a series of issues related to resource management: how
quickly function instances can be launched, function
instance placement strategies, function instance reuse,
and more. Several security issues are identified and
discussed.!  We further explore how CPU, /O and
network bandwidth are allocated among functions and
the ensuing performance implications. Last but not least,
we explore whether all resources are properly accounted
for, and report on two resource accounting bugs that
allow tenants to use extra resources for free. Some
highlights of our results include:

e AWS Lambda achieved the best scalability and
the lowest coldstart latency (the time to provision
a new function instance), followed by GCE. But

'We responsibly disclosed our findings to related parties before this
paper was made public.



Industrial Interest in Serverless
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What is FaaS good
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Wait! What about..

)
‘V  There are other serverless services, too!

* e.g., Google Cloud Dataflow, AWS Athena,

Snowflake...
e Often referred to as Backend-as-a-Service
E (BaaS)

We're primarily interested in generality.



Limitations on FaaS Today

oD
Limited execution lifetimes

m No inbound network connections
N

(b O is a bottleneck

No specialized hardware



O’( <
But that’s“\okay: Everything is‘ﬁ%nctional!

* Functional programs don’t have side effects or mutable state!

I\= Haskel

AWS Lambda
e And it is called AWS Lambda
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Dysfunction-as-a-Service

* FaaS is not designed for functional programming because real
applications share state

) fu: :[m): :[m:
f(g(x)) EE_\{I \ :

* FaaS is poorly suited for all of these
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Quantifying The Pain of FaaS

How Faa$S Disappoints Famous Computer Scientists
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Even Functional Programming is Slow!

f(g(x))

Lambda Lambda Lambda AWS
(S3) (Dynamo) (Direct) Step FNs

Median and 99t percentile latencies for composing two
arithmetic functions on AWS Lambda.
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Even Functional Programming is Slow!

f(g(x))

—~

Latency (ms

1000

100

10

Lambda Lambda Lambda
(S3) (Dynamo) (Direct)

AWS
Step FNs

Median and 99t percentile latencies for composing two

arithmetic functions on AWS Lambda.
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Even Functional Programming is Slow!

1000
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-
)

Latency (ms)

737 573

Lambda Lambda Lambda
(S3) (Dynamo) (Direct)

arithmetic functions on AWS Lambda.

3346

AWS
Step Fns

Median and 99t percentile latencies for composing two
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Shared Mutable State







M Serverless Storage
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Autoscaling Low Latency
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(In)Consistency Guarantees

oo

Shared
Counter
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No Inbound Network Connections

Wy

Enables Process Easy Fault
Migration Tolerance



Indirect Communication

@ Write Read
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A Platform for Stateful Serverless
Computing
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Background: Anna

* High performance across orders of magnitude in scale
v 10x faster than Redis/Cassandra in a geo-distributed deployment

» Autoscaling & cost-efficient
v' 500x faster than Amazon DynamoDB for the same cost

(a) High contention (zipf coefficient = 4)
\ I I I
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Fluent; FaaS-over-Anna

* Maintain disaggregation of compute & state
 Make serverless a viable option for stateful applications
* Use Anna for both storage and communication
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Fluent; FaaS-over-Anna

Network
Boundary
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Logical disaggregation with
physical colocation



Fluent; FaaS-over-Anna

Network
Boundary
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Key |dea: Caching

* Enable low-latency data access by caching data close to code
execution

« Communication (and composition) is achieved via a fast-path on top of
KVS puts and gets




Challenge: Cache Consistency

* tl;dr: we can provide a variety of coordination-avoiding consistency
modes — which is better than S3 or DynamoDB!

* This is done by encapsulating program state in lattices
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| attice

» Data structure that accepts incoming update in a way that is
associative, commutative, and idempotent (ACI).

* Achieves eventual replica convergence
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Causal Consistency

» Strongest consistency level that doesn’t require coordination

* Causally-related updates will be revealed in an order that respects
causality

 |n addition, guarantee

* Repeatable read
« Atomic visibility Cause 1 ] Cause 2

Cause 3 § Cause 4
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Function Composition, Revisited

f(g(x))

Fluent Lambda Lambda Lambda AWS
(S3) (Dynamo) (Direct) Step Fns
Median and 99t percentile latencies for composing two
arithmetic functions on AWS Lambda and Fluent.
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Case Study: Prediction Serving
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Prediction Serving

* Generate predictions from pretrained machine learning models

Model
Replica

Join with Model
Reference Data Replica

Clean Input

Model
Replica

» At first blush, a great fit for serverless infrastructure
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Amazon Sagemaker
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Background: SqueezeNet

« State-of-the-art image classification model (developed at Berkeley!)
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Prediction Serving

361.7

Fluent Python AWS
SageMaker

Median and 99t percentile latencies for SqueezeNet on
Fluent and AWS SageMaker.
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The Future of Cloud Programming
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Looking Back: Disappointed Computer
Scientists

* Functional programming is slow
« Communication through slow storage

* Poor consistency guarantees
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Making FaaS Functional
* Embrace state

* Easy things become better

 Hard things become easy

A step on our road towards a programmable cloud.

The State of Serverless Computing
QCon New York 06/24/2019



Our Vision

» Serverless will change the way that we write software and the way
that programming infrastructure works

* Cloud-native programming models
* Enable users to take advantage of millions of cores and petabytes of RAM
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Moving Forward from FaaS

/>

Building
Developer
Tools
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Moving Forward from FaaS

Building Developing
Developer Autoscaling
Tools Policy
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Moving Forward from FaaS

</ 7

Building Developing
Developer Autoscaling
Tools Policy

%
Designing
SLOs & SLAs



Thanks!

@cegwu0530 cewu@berkeley.edu fluent-project/fluent
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