
© Cloudera, Inc. All rights reserved. �1

Probabilistic programming from scratch

Mike Lee Williams • Fast Forward Labs 
@mikepqr • mlw@cloudera.com

Bayesian inference is great in theory...
• Quantify risk
• Insert institutional knowledge
• Online learning

And it’s pretty easy to implement from scratch

But fast implementations require cleverness…
• Metropolis Hastings
• Hamiltonian Monte Carlo with automatic differentiation and NUTS

the cleverness is now ready to abstracted away 😎

Bayesian inference is great in theory…

Probabilistic programming from scratch

def abayes(data, prior_sampler, simulate):  
 """Yield samples from the posterior by Approximate Bayesian Computation."""

 
For each guess based on our prior beliefs 
for p in prior_sampler:  

 # Simulate the experiment and see if it matches the real data  
 if simulate(p) == data:  

 # If it does, it was a good guess!  
 yield p

n_converted = 20
N = 400

from random import random  

def uniform_prior_sampler():  
 """Yield stream of random numbers in interval (0, 1)."""  
 while True:  
 yield random()

>>> s = uniform_prior_sampler()  

>>> next(s)  
0.259885230571928  

>>> next(s)  
0.7942284746654308

def simulate_conversion(p):  
 """Returns number of visitors who convert given conversion fraction p.”"" 
 conversions = 0  
 for i in range(N):  
 if random() < p:  
 conversions += 1  
 return conversions
 
>>> simulate_conversion(0.1)  
44

 
>>> simulate_conversion(0.1)  
52

>>> posterior_sampler = abayes(n_converted,  
 uniform_prior_sampler(),  
 simulate_conversion)
 
>>> next(posterior_sampler)  
0.04223951410146609
 
>>> next(posterior_sampler)  
0.06332386076583127

00001 N?0000300002

💥

0042100314

def abayes(data, prior_sampler, simulate):
 """Yield samples from the posterior by Approximate Bayesian Computation."""

 
For each guess based on our prior beliefs 
for p in prior_sampler:  

 # Simulate the experiment and see if it matches the real data  
 if simulate(p) == data:  

 # If it does, it was a good guess!  
 yield p

import random  

data = [314, 421]  

def tank_prior_sampler():  
 while True:  
 yield random.randint(421, 5000)  

def simulate_tank_capture(N):  
 return random.sample(range(N), 2)  

tank_posterior_sampler = abayes(data,  
 tank_prior_sampler(), 
 simulate_tank_capture)

But Bayesian inference is  
slow if you’re not careful.

 47%|██████████████████▎ | 47/100 [00:02<00:04, 25.84it/s]

>>> N *= 2 # 800 visitors  
>>> n_converted *= 2 # 40 conversions

 47%|██████████████████▎ | 47/100 [00:15<00:31, 6.62it/s]

def abayes(data, prior_sampler, simulate):

 """Yield samples from the posterior by Approximate Bayesian Computation."""

 
For each guess based on our prior beliefs 
for p in prior_sampler:  

 # Simulate the experiment and see if it matches the real data  
 if simulate(p) == data:  

 # If it does, it was a good guess!  
 yield p

Being careful requires cleverness…

import numpy as np
import itertools as it

def metropolis_hastings(dist, x0=0, burnin=1000, alpha=0.5, verbose=False):
 x = x0
 samples_accept = 0
 for i in it.count(1):
 candidate = np.random.normal(loc=x, scale=alpha)
 candidate_prob = min([1.0, dist(candidate) / dist(x)])
 accept = np.random.rand()
 if accept < candidate_prob:
 samples_accept += 1
 x = candidate
 if i > burnin:
 yield x, i, samples_accept

Hamiltonian Monte Carlo
• explores efficiently

with automatic differentiation
• differentiates automatically

and NUTS
• …and is idiot-proof 😎

Bayesian inference is great in theory...
• Quantify risk
• Insert institutional knowledge
• Online learning

And it’s pretty easy to implement from scratch

But fast implementations require cleverness…
• Metropolis Hastings
• Hamiltonian Monte Carlo with automatic differentiation and NUTS

the cleverness is now ready to abstracted away 😎

Probabilistic programming in the real world

>>> from pymc3 import Model, DiscreteUniform, sample  

>>> with Model():  
 n_tanks = DiscreteUniform('n_tanks', lower=max(captured_tanks), upper=5000)  
 obs = DiscreteUniform('obs', lower=0, upper=n_tanks, observed=captured_tanks)  
 trace = sample(10000)  

Assigned Metropolis to n_tanks  
100%|██████████| 10000/10000 [00:02<00:00, 3998.03it/s]

data {
 int<lower=0> N;
 int<lower=0> N_features;
 matrix[N, N_features] X;
 int<lower=0,upper=1> repaid[N];
}
parameters {
 vector[N_features] p_coef;
}
model {
 vector[N] p;
 p_coef ~ cauchy(0, 2.5);
 p = logit(X * p_coef);
 repaid ~ bernoulli(p);
}

Options
Stan
• great for offline analysis 👍
• but it's awkward to productize

pymc3
• algorithmically half a step behind (much less true than it used to be)
• much easier to build products with 😎
• pymc4 on Tensorflow Probability coming soon

Others
• Tensorflow Probability, Edward, Anglican, Figaro, Pyro

Prophet (Facebook)

Next steps
The algorithms behind probabilistic programming  
http://blog.fastforwardlabs.com/2017/01/30/the-algorithms-behind-
probabilistic-programming.html

NYC Real Estate Simulator  
http://fastforwardlabs.github.io/pre/

Probabilistic programming from scratch 
https://www.oreilly.com/learning/probabilistic-programming-from-scratch

Or get in touch! @mikepqr or mlw@cloudera.com

http://blog.fastforwardlabs.com/2017/01/30/the-algorithms-behind-probabilistic-programming.html
http://blog.fastforwardlabs.com/2017/01/30/the-algorithms-behind-probabilistic-programming.html
http://fastforwardlabs.github.io/pre/
https://www.oreilly.com/learning/probabilistic-programming-from-scratch
mailto:mlw@cloudera.com

