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Bayesian inference is great in theory... 
• Quantify risk 
• Insert institutional knowledge 
• Online learning 

And it’s pretty easy to implement from scratch 

But fast implementations require cleverness… 
• Metropolis Hastings 
• Hamiltonian Monte Carlo with automatic differentiation and NUTS 

the cleverness is now ready to abstracted away 😎



Bayesian inference is great in theory…



















Probabilistic programming from scratch



def abayes(data, prior_sampler, simulate):  
    """Yield samples from the posterior by Approximate Bayesian Computation.""" 

 
# For each guess based on our prior beliefs 
for p in prior_sampler:  

        # Simulate the experiment and see if it matches the real data  
        if simulate(p) == data:  

            # If it does, it was a good guess!  
            yield p



n_converted = 20 
N = 400



from random import random  

def uniform_prior_sampler():  
    """Yield stream of random numbers in interval (0, 1)."""  
    while True:  
        yield random() 

>>> s = uniform_prior_sampler()  

>>> next(s)  
0.259885230571928  

>>> next(s)  
0.7942284746654308



def simulate_conversion(p):  
    """Returns number of visitors who convert given conversion fraction p.”"" 
    conversions = 0  
    for i in range(N):  
        if random() < p:  
            conversions += 1  
    return conversions 
 
>>> simulate_conversion(0.1)  
44 

 
>>> simulate_conversion(0.1)  
52



>>> posterior_sampler = abayes(n_converted,  
                               uniform_prior_sampler(),  
                               simulate_conversion) 
 
>>> next(posterior_sampler)  
0.04223951410146609 
 
>>> next(posterior_sampler)  
0.06332386076583127
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def abayes(data, prior_sampler, simulate): 
    """Yield samples from the posterior by Approximate Bayesian Computation.""" 

 
# For each guess based on our prior beliefs 
for p in prior_sampler:  

        # Simulate the experiment and see if it matches the real data  
        if simulate(p) == data:  

            # If it does, it was a good guess!  
            yield p



import random  

data = [314, 421]  

def tank_prior_sampler():  
    while True:  
        yield random.randint(421, 5000)  

def simulate_tank_capture(N):  
    return random.sample(range(N), 2)  

tank_posterior_sampler = abayes(data,  
                                tank_prior_sampler(), 
                                simulate_tank_capture)





But Bayesian inference is  
slow if you’re not careful.





 47%|██████████████████▎                    | 47/100 [00:02<00:04, 25.84it/s]



>>> N *= 2            # 800 visitors  
>>> n_converted *= 2  # 40 conversions



 47%|██████████████████▎                    | 47/100 [00:15<00:31,  6.62it/s]



def abayes(data, prior_sampler, simulate): 

    """Yield samples from the posterior by Approximate Bayesian Computation.""" 

 
# For each guess based on our prior beliefs 
for p in prior_sampler:  

        # Simulate the experiment and see if it matches the real data  
        if simulate(p) == data:  

            # If it does, it was a good guess!  
            yield p



Being careful requires cleverness…



import numpy as np 
import itertools as it 

def metropolis_hastings(dist, x0=0, burnin=1000, alpha=0.5, verbose=False): 
    x = x0 
    samples_accept = 0 
    for i in it.count(1): 
        candidate = np.random.normal(loc=x, scale=alpha) 
        candidate_prob = min([1.0, dist(candidate) / dist(x)]) 
        accept = np.random.rand() 
        if accept < candidate_prob: 
            samples_accept += 1 
            x = candidate 
        if i > burnin: 
            yield x, i, samples_accept



Hamiltonian Monte Carlo 
• explores efficiently 

with automatic differentiation 
• differentiates automatically 

and NUTS 
• …and is idiot-proof 😎



Bayesian inference is great in theory... 
• Quantify risk 
• Insert institutional knowledge 
• Online learning 

And it’s pretty easy to implement from scratch 

But fast implementations require cleverness… 
• Metropolis Hastings 
• Hamiltonian Monte Carlo with automatic differentiation and NUTS 

the cleverness is now ready to abstracted away 😎



Probabilistic programming in the real world





>>> from pymc3 import Model, DiscreteUniform, sample  

>>> with Model():  
        n_tanks = DiscreteUniform('n_tanks', lower=max(captured_tanks), upper=5000)  
        obs = DiscreteUniform('obs', lower=0, upper=n_tanks, observed=captured_tanks)  
        trace = sample(10000)  

Assigned Metropolis to n_tanks  
100%|██████████| 10000/10000 [00:02<00:00, 3998.03it/s]



data { 
    int<lower=0> N; 
    int<lower=0> N_features; 
    matrix[N, N_features] X; 
    int<lower=0,upper=1> repaid[N]; 
} 
parameters { 
    vector[N_features] p_coef; 
} 
model { 
    vector[N] p; 
    p_coef ~ cauchy(0, 2.5); 
    p = logit(X * p_coef); 
    repaid ~ bernoulli(p); 
}







Options
Stan 
• great for offline analysis 👍 
• but it's awkward to productize 

pymc3 
• algorithmically half a step behind (much less true than it used to be) 
• much easier to build products with 😎 
• pymc4 on Tensorflow Probability coming soon 

Others 
• Tensorflow Probability, Edward, Anglican, Figaro, Pyro



Prophet (Facebook)



Next steps
The algorithms behind probabilistic programming  
http://blog.fastforwardlabs.com/2017/01/30/the-algorithms-behind-
probabilistic-programming.html 

NYC Real Estate Simulator  
http://fastforwardlabs.github.io/pre/ 

Probabilistic programming from scratch 
https://www.oreilly.com/learning/probabilistic-programming-from-scratch  

Or get in touch! @mikepqr or mlw@cloudera.com
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