cloudera

Probabilistic programming from scratch

Mike Lee Williams • Fast Forward Labs @mikepqr • mlw@cloudera.com

Deep Learning: Image Analysis

Summarization

FF

Cloudera Fast Forward Labs

FF

Semantic Recommendations

Bayesian inference is great in theory...

- Quantify risk
- Insert institutional knowledge
- Online learning

And it's pretty easy to implement from scratch

But fast implementations require cleverness...

- Metropolis Hastings
- Hamiltonian Monte Carlo with automatic differentiation and NUTS the cleverness is now ready to abstracted away 😂

Bayesian inference is great in theory...

layout A 4% conversion rate

layout B 5% conversion rate

Probabilistic programming from scratch

def abayes(data, prior_sampler, simulate):
 """Yield samples from the posterior by Approximate Bayesian Computation."""

For each guess based on our prior beliefs
for p in prior_sampler:

Simulate the experiment and see if it matches the real data
if simulate(p) == data:

If it does, it was a good guess!
yield p

 $n_{converted} = 20$ N = 400

from random import random

def uniform_prior_sampler(): """Yield stream of random numbers in interval (0, 1).""" while True: yield random()

>>> s = uniform_prior_sampler()

>>> **next**(s) 0.259885230571928

>>> **next**(s) 0.7942284746654308

```
def simulate_conversion(p):
    """Returns number of visitors wh
    conversions = 0
    for i in range(N):
        if random() < p:
            conversions += 1
        return conversions
>>> simulate_conversion(0.1)
44
>>> simulate_conversion(0.1)
52
```

"""Returns number of visitors who convert given conversion fraction p."""

>> next(posterior_sampler) 0.04223951410146609

>> next(posterior_sampler) 0.06332386076583127

```
>>> posterior_sampler = abayes(n_converted,
                               uniform_prior_sampler(),
                               simulate_conversion)
```


def abayes(data, prior_sampler, simulate): """Yield samples from the posterior by Approximate Bayesian Computation."""

For each guess based on our prior beliefs for p in prior_sampler:

Simulate the experiment and see if it matches the real data if simulate(p) == data:

If it does, it was a good guess! yield p

import random

data = [314, 421]

def tank_prior_sampler():
 while True:
 yield random.randint(421, 5000)

def simulate_tank_capture(N):
 return random.sample(range(N), 2)

tank_posterior_sampler = abayes(data,

```
:
dint(421, 5000)
e(N):
(range(N), 2)
abayes(data,
tank_prior_sampler(),
simulate_tank_capture)
```


Probability

But Bayesian inference is slow if you're not careful.

| 47/100 [00:02<00:04, 25.84it/s]

>>> N *= 2 # 800 visitors
>>> n_converted *= 2 # 40 conversions

| 47/100 [00:15<00:31, 6.62it/s]

def abayes(data, prior_sampler, simulate):
 """Yield samples from the posterior by Approximate Bayesian Computation."""

For each guess based on our prior beliefs
for p in prior_sampler:

Simulate the experiment and see if it matches the real data
if simulate(p) == data:

If it does, it was a good guess!
yield p

Being careful requires cleverness...

```
import numpy as np
import itertools as it
```

```
def metropolis_hastings(dist, x0=0, burnin=1000, alpha=0.5, verbose=False):
   x = x0
    samples_accept = 0
    for i in it.count(1):
        candidate = np.random.normal(loc=x, scale=alpha)
        candidate_prob = min([1.0, dist(candidate) / dist(x)])
        accept = np.random.rand()
        if accept < candidate_prob:</pre>
            samples_accept += 1
            x = candidate
        if i > burnin:
            yield x, i, samples_accept
```

Hamiltonian Monte Carloexplores efficiently

with automatic differentiation

differentiates automatically

and NUTS

• ...and is idiot-proof 😎

Bayesian inference is great in theory...

- Quantify risk
- Insert institutional knowledge
- Online learning

And it's pretty easy to implement from scratch

But fast implementations require cleverness...

- Metropolis Hastings
- Hamiltonian Monte Carlo with automatic differentiation and NUTS the cleverness is now ready to abstracted away 😂

Probabilistic programming in the real world

n_tanks = DiscreteUniform('n_tanks', lower=max(captured_tanks), upper=5000) obs = DiscreteUniform('obs', lower=0, upper=n_tanks, observed=captured_tanks)


```
data {
    int<lower=0> N;
    int<lower=0> N_features;
    matrix[N, N_features] X;
    int<lower=0, upper=1> repaid[N];
parameters {
    vector[N_features] p_coef;
model {
    vector[N] p;
    p_coef \sim cauchy(0, 2.5);
    p = logit(X * p_coef);
    repaid ~ bernoulli(p);
```


Loan Officer Simulator					
Loan Applications				Loan Actions	
Exp. Profit	% Repaid	Upside	Downside	Adjust Rate:	
\$28,500 at 20% #145518			#1455183		Probabil
13k	77%	21k	23k		Frobubit
					Int. R
\$22,500 at 20% for 3 years			#8650164		15.0
10k	79%	16k	18k		22.5
					+7.5
\$22,500 at 20%			#6581413		Probable
10k	75%	16k	17k		80k
					60k
\$24,000 at 20%			#450871		40k
9k	75%	17k	21k		20k
					0
\$25,500 at 20%		#457500			
8k	69%	19k	22k		Partial R
					4%
\$22,500 at 15% for 3 years			#1524226		3%
бk	75%	+12k	-19k		2%
					<mark>-~1</mark>
\$16,500 at 20% #3384062				0%	
бk	69%	12k	13k		0.0

Adjust the interest rate below to see how it effects loan repayment probabilities

Options

Stan

- great for offline analysis 👍
- but it's awkward to productize

pymc3

- much easier to build products with Image and the second sec
- pymc4 on Tensorflow Probability coming soon

Others

Tensorflow Probability, Edward, Anglican, Figaro, Pyro

algorithmically half a step behind (much less true than it used to be)

Prophet (Facebook)

The algorithms behind probabilistic programming http://blog.fastforwardlabs.com/2017/01/30/the-algorithms-behindprobabilistic-programming.html

NYC Real Estate Simulator http://fastforwardlabs.github.io/pre/

Probabilistic programming from scratch https://www.oreilly.com/learning/probabilistic-programming-from-scratch

Or get in touch! @mikepqr or mlw@cloudera.com

Next steps