
With Distributed Tracing

Conquering Microservices Complexity @Uber

Yuri Shkuro
SOFTWARE ENGINEER @ UBER

Agenda

Why Distributed Tracing

Trace as a Narrative

Trace vs. Trace

Traces vs. Trace

Data Lineage

Q & A

Yuri Shkuro

Software Engineer
Uber Technologies

shkuro.com

Founder & Maintainer 
of CNCF Jaeger

jaegertracing.io

Co-founder of
OpenTracing &
OpenTelemetry

Author of "Mastering
Distributed Tracing",
by Packt Publishing

http://shkuro.com
http://jaegertracing.io
https://www.shkuro.com/books/2019-mastering-distributed-tracing/
https://www.shkuro.com/books/2019-mastering-distributed-tracing/
https://www.shkuro.com/books/2019-mastering-distributed-tracing/

Quick Poll

Why Distributed Tracing

Scaling With Users
Distributed Systems

Scaling With Engineering Organization
Monoliths to Microservices

D C

BA

A

B

C

D

Scaling With CPU Cores
Asynchronous Programming Models, Distributed Concurrency

BASIC CONCURRENCY ASYNC CONCURRENCY DISTRIBUTED CONCURRENCY

In microservices architectures
the number of failure modes

increases exponentially

Observability of
distributed transactions

is paramount!

Observability
vs.

monitoring

Observability
vs.

monitoring

Observability
System’s ability to answer questions

Which services did the request go
through

What did every service do when
processing the request

If the request was slow, where were
the bottlenecks

If the request failed, where did the
errors happen

How different was the execution from
the normal system behavior

Structural differences

Performance differences

What was on the critical path of the
request

Who should be paged

Distributed tracing
can answer these questions

and accelerate root cause analysis

Distributed Tracing in a Nutshell

Trace as a narrative

Trace Timeline
Classic trace view as Gantt chart

Trace Timeline

1

Parent → Child → Grandchild

Trace Timeline

1

Time + Mini-Map

2

Trace Timeline

1

Blocking operation

2

3

Trace Timeline

1

Sequential operations

2

3

4

Trace Timeline

1

Errors

2

3

4

5

Span details

Span details

1

Database query

Span details

1

Timed events (logs)

2

We can also trace
asynchronous workflows

Tracing Talk Application
Mastering Distributed Tracing, Chapter 5

Tracing Talk Application
Architecture

Tracing Talk Application
Request trace

Tracing Talk Application
Message sent

1

Tracing Talk Application
Message received

1

2

Single Trace
Pros and cons

Tells a story about a single
transaction

Allows deep contextual drill-down

Acts as a distributed stack trace

One trace can be overwhelmingly
complex

Tells a story about a single
transaction. What if it’s an anomaly?

Too Much Complexity
One request - 30 services, 100+ RPCs

Too Much Complexity
Some traces have hundreds of thousands spans

Reducing complexity by
smarter visualizations

Trace graph
Time ordered, repeated edges collapsed

Trace graph
Latency heat map

Finding anomalies is easier
when we look at differences

in performance profiles

Trace vs. Trace

Comparing Trace Structures
Just like a Code Diff

Comparing Trace Structures
Shared Structure

1

Comparing Trace Structures
Absent in One or the Traces

1

2

Comparing Trace Structures
More or Fewer Spans Within a Node

1

2

3

Comparing Trace Structures
Substantial Divergence

1

2

3

4

Deep Linking to Raw Traces & Spans

5

Error: ”You have an outstanding balance…"

Production story

Migrating services to a nearby datacenter

Request latency doubles

Investigating latency
Structural comparison not always useful

Investigating latency
Very similar structure

1

Investigating latency
Left trace 2.74 seconds

1

2

Investigating latency
Right trace 4.2 seconds

1

2 3

Investigating latency
Due to structural differences?

1

2 3

4

Investigating latency
Or dispersed contributors?

1

2 3

4

5

Heat-maps!

Comparing trace durations
Heat-map of latencies

Comparing trace durations
Similar durations (grey)

1

Comparing trace durations
Nodes that are not shared (white)

1

2

Comparing trace durations
Red heat-map for latency differences

1

2
3

Comparing trace durations
Details on Mouse-Over

Comparing trace durations
Details on Mouse-Over

How Are These Approach Different?
Summary

Surface less
information

Condense  
the structural

representation

Emphasize
the differences

Distinct comparison
modes simplify  

the comparisons

Challenges

Individual traces can be an outliers.

User must find the right baseline.

Traces vs. Trace

What Went Wrong?
Root Cause Analysis

Top Level Outcome

1

Including Request/Response Payloads

Link to the Trace

1 2

Can Always Go Back to Raw Data

Trace Structure

1 2

3

Nodes Are Sorted Chronologically

Present and Missing Nodes

1 2

3

4

Color-Coding

A Node With Error Data

1 2

3

4

5

Error Data Panel

1 2

3

4

5

6

How Is This Approach Different?
Summary

Much broader
context:

aggregate vs.
one trace

One purpose: root
cause analysis of
reliability issues

Tackling Data Complexity

Uber is a data company
OK, and a transportation company

More data is derived from other data

Data undergoes many transformations

Microservices / RPCs Streams / Kafka Data lake / HDFS

Debugging data quality is difficult

Data Lineage
Debugging Data Quality

Microservices / RPCs Streams / Kafka Data lake / HDFS

Observability requires
high quality instrumentation.

Our Software Is Highly Composable
Often from Open Source Components

Microservice

Queue DriverDB Driver

DB Queue

Server
Framework RPC Framework

Threads

Tracing breaks if components 
don’t understand each other.

Standardization Efforts
Instrumentation and Data Formats

Effective observability requires high-quality
telemetry.

OpenTelemetry makes robust, portable
telemetry a built-in feature of cloud-native
software.

Distributed Tracing Working Group

Data formats for on-the-wire trace context &
correlation-context, and out-of-band trace
data.

In Summary

Distributed tracing helps us
to deal with the overwhelming
complexity of microservices

In Summary

Creative visualizations
are essential

in performance analysis

In Summary

Distributed tracing empowers
unparalleled insights

into our distributed systems

Q&A

Thank You
Find me @ shkuro.com

http://shkuro.com

