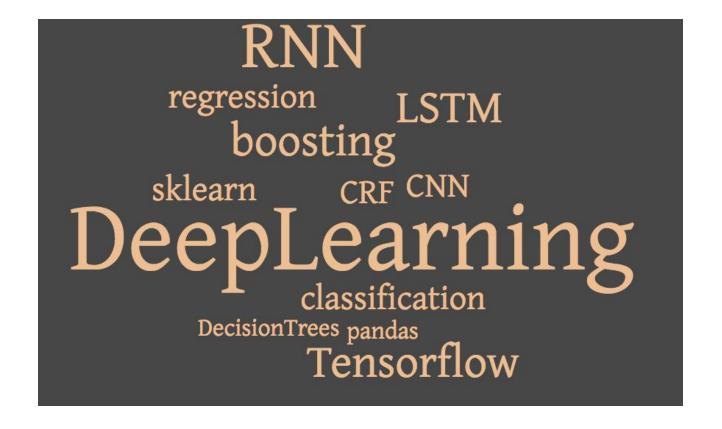


DOORDASH

Engineering Systems for Real-time Predictions at DoorDash

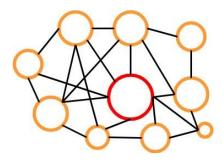
Raghav Ramesh Machine Learning Engineer, DoorDash June 2018

ML seems like



Practically, ML is

Data Pipelines



Model management

Performance monitoring

Real world ML = 10% algorithms

+

90% ML systems

ML Systems =

Robust tools

+

Templatizing best practices

ML Systems =

Robust tools

+

Templatizing best practices

Concepts > Implementation

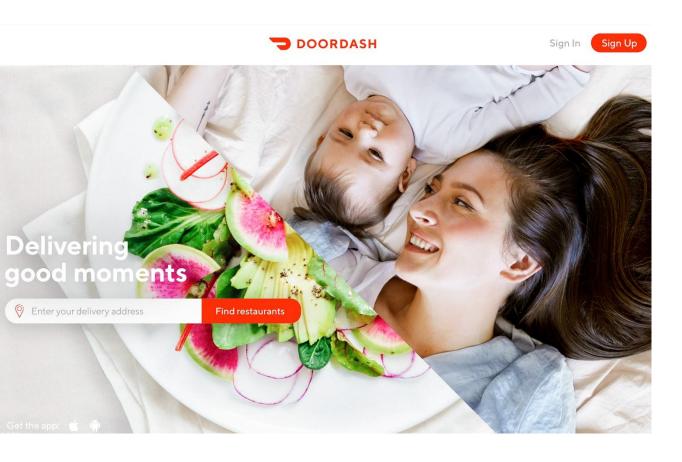
Agenda

DoorDash Overview

Evolution of ML

Systems for ML

Systems in action

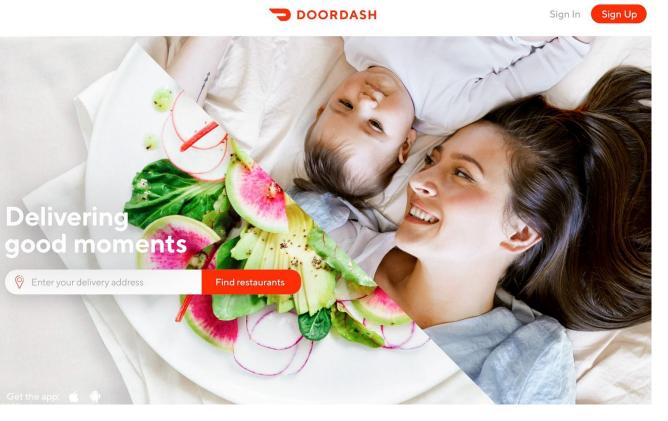


Last mile, on-demand logistics

Three-sided marketplace

Restaurant Delivery

1600 cities by end of 2018



100,000+ Restaurants

300,000+ Dashers

10,000,000s of Deliveries

Marketplace

Merchants

Consumers

Marketplace

Merchants

Reach

Revenue

Flexibility

Earnings

Selection

Convenience

Dashers

ML @ DoorDash

Merchants

Core Dispatch
Batching algorithms
Hotspots

Recommendations / Personalization Search ranking Demand distribution

Dashers

Supply/Demand

Dynamic Pricing

Delivery Time

Consumers

Merchants

Food prep time
Selection intelligence
Parking prediction

Core Dispatch
Batching algorithms
Hotspots

Recommendations / Personalization Search ranking Demand distribution

Pay calculation
Supply forecasting
Incentives

Dashers

Delivery Time Predictions
Supply/Demand Management
Dynamic Pricing

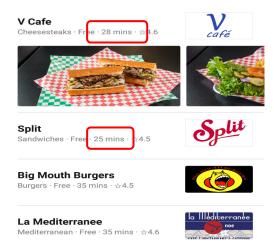
Acquisition Promotions

Consumers

Offline



Online



How application of ML evolves in real world products

7

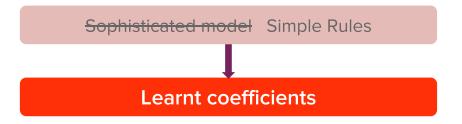
Sophisticated model Simple Rules

Sophisticated model Simple Rules

Manhattan → 40 mins

Austin → 35 mins

San Jose → 31 mins



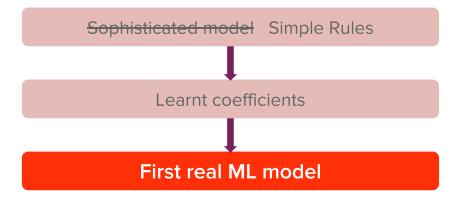
ETA =

25 minutes

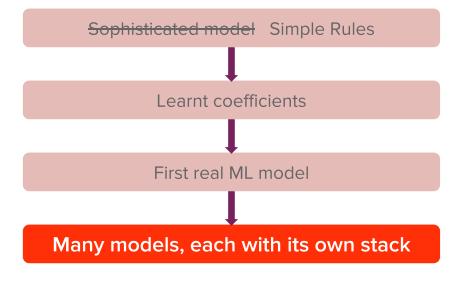
+ **0.1** * supply_factor

+ **0.05** * order_value

Coefficients →
Production monolith



Scikit-learn
Feature extractors

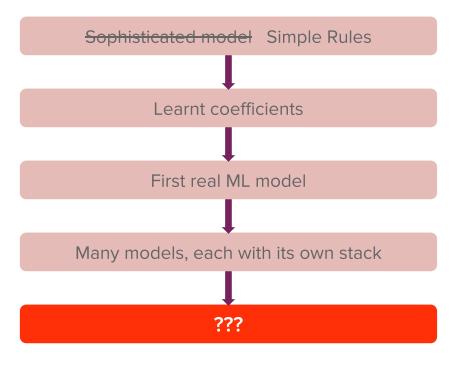


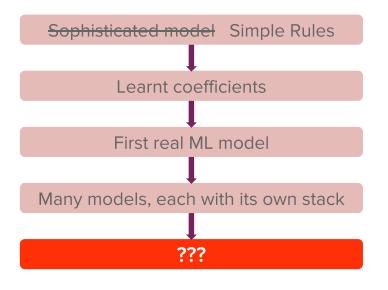
Different models for

ETA, Prep time, Demand forecast, etc

Independent models

Duplicated code





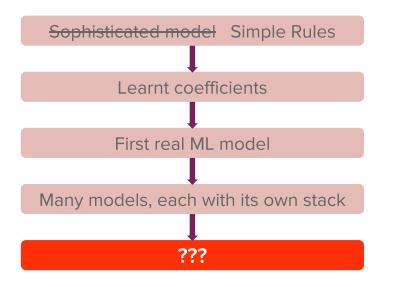
As your product grows, performance of ML becomes mission critical

Accuracy SLAs

System SLAs

Debuggability

Time to ship



As your product grows, performance of ML becomes mission critical

Accuracy SLAs

System SLAs

Debuggability

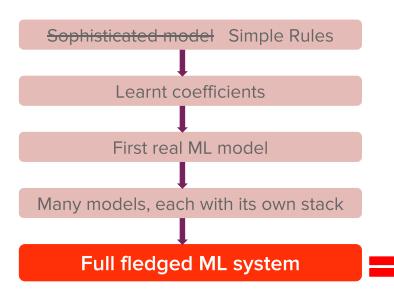
Time to ship

... and as you build more ML

Dependencies

Custom code

ML Economies of scale



Accuracy SLAs

System SLAs

Debuggability

Time to ship

Dependencies

Custom code

ML Economies of scale

Robust tools

Templatize

ML Systems

Templatize best practices

Templatize best practices

Ease of use

Templatize best practices

Ease of use

Simple tools

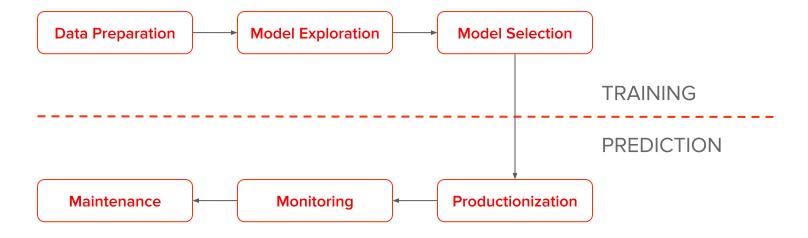
Templatize best practices

Ease of use

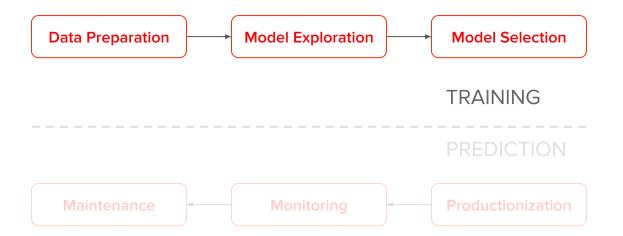
Simple tools

Integrate into ecosystem

ML Systems

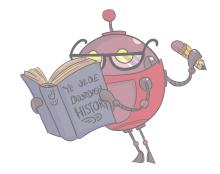


ML Systems: Training

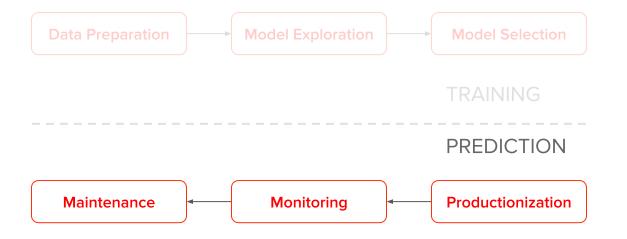


Model agnostic

Iteration speed



ML Systems: Prediction



Real-time

Production systems

Scale

Training

Training Pipeline

- ETL pipelines
- Job Scheduler



- Standardized
- Key → Value

- **ML** wrapper
- **Airflow**

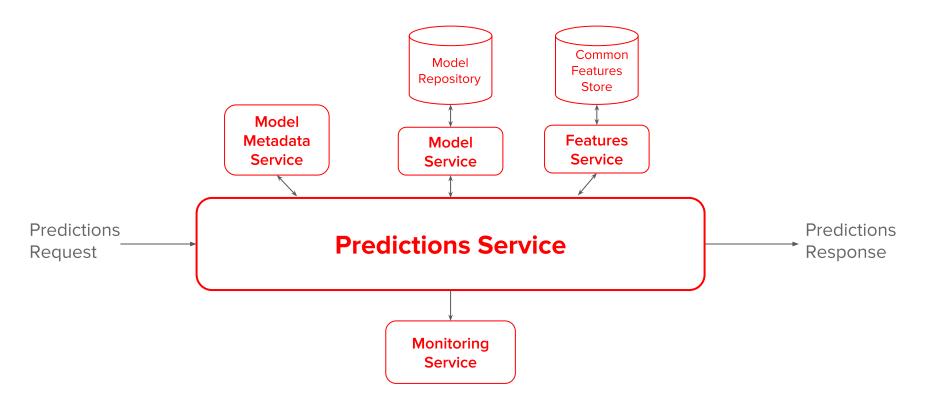
- S3
- Metadata

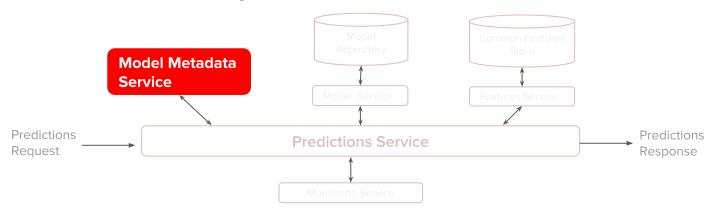
Predictions

- Multiple predictors
- Low latency
- Load balancer
- HTTP

- Multiple predictors
- Low latency
- Load balancer
- HTTP

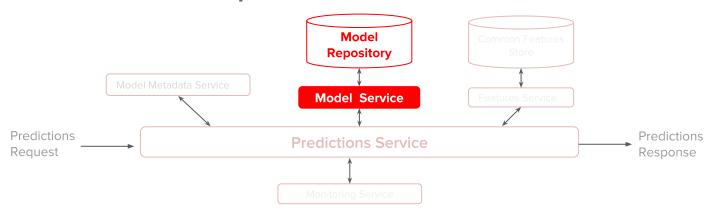
- Kubernetes
- Flask



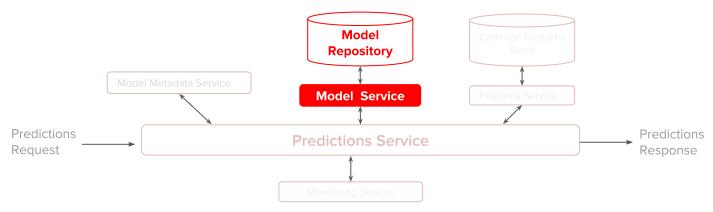


- Command Center
- Model Status, Type, Version
- Registry and Retrieval

```
"id": "staging_prep_model_shadow_080402",
    "predictor": "prep_time",
    "is_active": true,
    "is_shadow": true,
    "is_ensemble": false,
    "s3_bucket_name": "doordash-staging-model-buckets",
    "s3_key_path": "prep_time/shadows/model_20180402",
    "predictor_type": "regressor",
    "metadata": { }
```

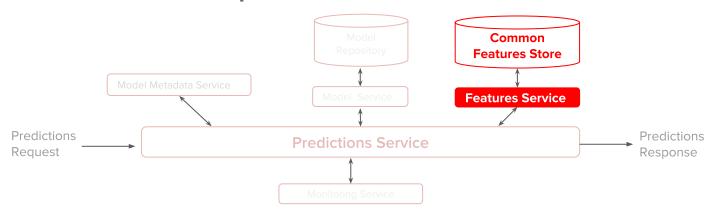



- Fetch models
- Caching layer
- Rollout Control
 - Shadowing
 - Experimentation



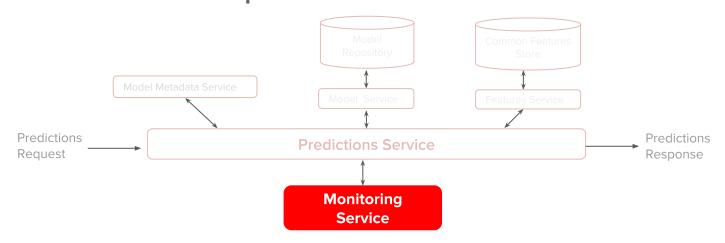
- Fetch models
- Caching layer
- Rollout Control
 - Shadowing
 - Experimentation

- Multiple model types
- Ensembling
- Segmentation



- Features Retrieval
- Source of truth
- Training / Prediction Consistency

- Batch aggregates
- Embeddings



• Predictions Monitoring

Statsd

• Features Distribution

Segment

Logging

Systems in action

Features integrity

Consistency across environments

Consistency over time

Features integrity

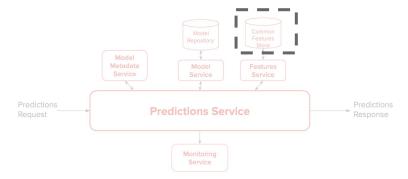
No differences between training and prediction

Consistency across environments

No differences between training and prediction

Common Features Store

- Used for both training and prediction
- Exact code
- Works for most features



Consistency across environments

No differences between training and prediction

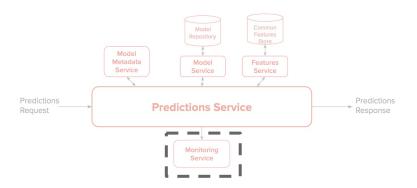
Common Features Store

- Used for both training and prediction
- Exact code
- Works for most features

Model Model Model Service Service **Predictions Service** Monitorina Service

Feature Logging on Prediction

- Log X%
- Re-train on that data
- Works for non new features



Features integrity

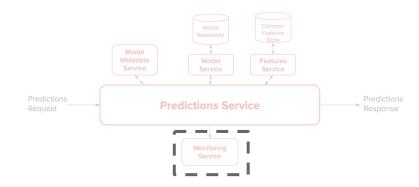
- Consistency across environments
- No data degradations

Features integrity

- Consistency across environments
- Consistency over time
 No data degradations

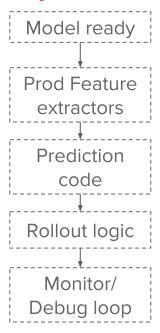
Features Monitoring

- Plot Distributions
- Alerting

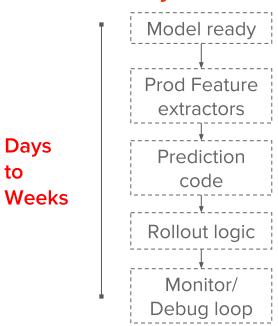


7

Previously



Previously



Model ready

Debug loop

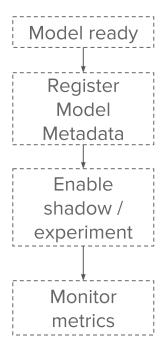
Previously

Days

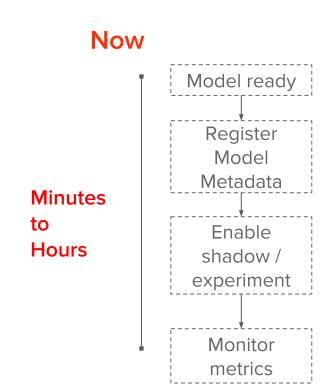
to

Prod Feature extractors Prediction code Weeks Rollout logic Monitor/

Now



Previously Model ready **Prod Feature** extractors Days Prediction to code Weeks Rollout logic Monitor/ Debug loop



Takeaways

Robust tools are critical to deploying ML in production

Templatizing ML best practices lets us focus on algorithms

Particularly useful tools are

- Common Features Store
- Experimentation and shadow systems
- Predictions and Features monitoring

Thank you!

Interested? We are hiring! www.doordash.com/careers

Raghav Ramesh

raghav at doordash.com

LinkedIn