
:
LEARNING TO BEND BUT NOT BREAK AT

Whoops, something went wrong…
Netflix Streaming Error
We’re having trouble playing this title right now. Please try again later or select a different title.

Shard A Shard B Shard C

Functional Sharding

Client Server

RPC tuning

Bulkheads & Fallbacks

Non-Critical
Service Owner.

How to fail well?

Critical Service
Owner.

How to stay up in spite of
change and turmoil?

Chaos
Engineer.

How to help teams build
more resilient systems?

Service Criticality

Driver_free_car.jpg, CC BY-SA 3.0, BP63Vincente 2015, Wikimedia

https://commons.wikimedia.org/wiki/File:Driver_free_car.jpg
https://commons.wikimedia.org/w/index.php?title=User:BP63Vincent
https://www.flickr.com/photos/forcedrhubarb/

Service B

Service A

Service E

Service C

Service F

Service D

Service G

Service Criticality

Non-critical
Critical

KPI = Playback Starts Per Second (SPS)

Non-Critical
Service
Owner. Critical Service

Owner.
Chaos
Engineer.

Badging

My service is non-critical,
who needs Chaos?

How do you know your
service is non-critical?

https://github.com/Netflix/Hystrix

Insights
Timeouts

Bulkheads
FallbacksCircuit Breakers

https://github.com/Netflix/Hystrix

Badging Service

API Service

Badging Service (Non-Critical)

Fallback

Badging Service

API Service

Surprise! Badging is Critical!

Fallback

● Environmental factors may
differ between test and
production (config, data, etc.)

● Systems behave differently
under load than they do in a
single unit or integration test

● Users react differently to
failures than you expect.

Gaps in Traditional Testing

Non-Critical
Service
Owner. Critical Service

Owner.
Chaos
Engineer.

How to fail well?
● Functioning fallbacks.
● Use Chaos to close gaps in traditional

testing methods.

Chaos
Engineer.

Non-Critical
Service Owner.

Critical
Service
Owner.

Protect your service
(and your customers)

How can I decrease the blast
radius of failures?

How about functional
sharding!

API Service API Service API Service

Playback Service

URL Service

Playback Service Architecture

NON-CRITICAL
 Experience or
Performance

Impact

CRITICAL
Customer
Streaming

Impact

API Service API Service API Service

Critical Playback
Service

Critical URL
Service

Non-Critical
Playback Service

Non-Critical
URL Service

Playback Service Functional Shards

CC BY-NC 2.5, Randall Munroe, xkcd.com

https://xkcd.com/

API Service API Service API Service

Critical Playback
Service

URL Service

Non-Critical
Playback Service

Non-Critical
URL Service

Experimenting with Shards

Customer Behavior Insights

API Service API Service API Service

Critical Playback
Service

URL Service

Non-Critical
Playback Service

Non-Critical
URL Service

25%
More
Traffic

How do I confirm my system
is tuned properly?

Inject latency, of course!

● Retries
● Timeouts
● Load balancing

strategies
● Concurrency limits
● Circuit breakers

Dependency Tuning

Playback
Service

Customer Tag
Service

Calendar*, CC BY 2.0, Dafne Cholete 2011, Flikr

https://www.flickr.com/photos/forcedrhubarb/6924506086
https://www.flickr.com/photos/dafnecholet/5374200948
https://www.flickr.com/photos/forcedrhubarb/

Playback Service → Customer Tag Service

Customer Tag
Service

Playback Service

Customer Tag
Service

Playback Service

Latency Injection - Round 1

Customer Tag
Service

Playback Service

Latency Injection - Round 2

1. Customer
Tag Service

Playback Service

2. URL Service

Latency Injection - Round 2
300ms timeout

350ms Out of time!!

● Fewer changes between
experiments make it easier to
isolate the regression.

● Fine-grained experiments
scope the investigation (as
opposed to outages where
there are lots of red-herrings).

Continuous Experimentation FTW!

Chaos
Engineer.

Non-Critical
Service Owner.

Critical
Service
Owner.

How to stay up in spite of change and turmoil?
● Functional sharding for fault isolation.
● Tune RPC calls.
● Use Chaos to validate config and resiliency strategies.

Chaos
Engineer.Non-Critical

Service Owner.
Critical Service
Owner.

How do you help teams build
more resilient systems? We need to do more of the

heavy lifting.

Perhaps the Principles of
Chaos can help!

Principles of Chaos

● Minimize Blast Radius
● Build a Hypothesis around

Steady State Behavior
● Vary Real-world Events
● Run Experiments in

Production
● Automate Experiments to

Run Continuously

https://principlesofchaos.org/

https://principlesofchaos.org/

Rock-em, CC BY-SA 2.0, Ariel Waldmane 2009, Flikr

Test v. Production

https://www.flickr.com/photos/ariels_photos/4195885445
https://www.flickr.com/photos/ariels_photos/
https://www.flickr.com/photos/forcedrhubarb/

How can we Minimize Blast
Radius?

Safety, safety, safety!!

Kill Switch

Service BService A Service C

Service B
(Control)

Service B
(Experiment)

Canary Strategy

0.5%

0.5%

Limit Impact

Runs In Progress

Experiment Cluster Status

Latency api-prod In Progress

Latency dredd-prod In Progress

Failure api-prod Queued

Limit When Experiments can Run

Safety First during the
Holidays

Ensure Failures are Addressed

1. Control errors too high.

2. Errors in chaos code unrelated
to the experiment in question.

3. Platform components crashing
(monitoring, worker nodes, etc).

Fail Open

How should we Build a
Hypothesis around Steady

State? Observability is key!

Add effective monitoring,
analysis, and insights.

Insights

Automated Canary Analysis (ACA)

https://medium.com/netflix-techblog/automated-canary-analysis-at-netflix-with-kayenta-3260bc7acc69

https://medium.com/netflix-techblog/automated-canary-analysis-at-netflix-with-kayenta-3260bc7acc69

ChAP ACA Configurations

Validate the experiment itself

Validate the real-time monitoring didn’t miss
anything

Check for service failures even if they didn’t
cause an impact in KPIs

See if your service is approaching an
unhealthy state

How do you Vary Real-world
Events in an automated

fashion?
By carefully designing and

prioritizing your experiments, of
course!

Understand the Service Under Test

Dependency Insights:
● Timeouts
● Retries
● % of Requests Involved
● Requests Per Second
● Latency
● Hystrix Commands

○ Fallbacks
○ Timeouts

Evaluate Safety

NOT SAFE TO FAIL!!!

Can more
automation
eventually
lead to fewer
experiments?

Prioritize Experiments

Retries

Traffic Percentage

Failure

Latency
Experiment Type Aging

Generate Experiments

Failure

Latency

Failure

Latency

Is it time to Run Experiments
in Production?

Here we go!

What happened?

14
Vulnerabilities

0
Outages

ConfidenceTooling
Gaps

Example Finding

License
Service

Playback Service

376 ms Latency

No Fallback!

88.85%
of cluster

traffic

10 threads
Thread Pool Rejections

Timeouts
Circuit Breaker

Fully validated fix in tool before rollout!

After a day's worth of data, the results are
looking fantastic.

Every negative metric [for that Hystrix command]
had a drastic improvement, and some by an
order of magnitude.

--Robert Reta,
 Playback Licensing

What else can be safer?

Chaos
Engineer.Non-Critical

Service Owner.
Critical Service
Owner.

How do you help teams build more resilient
systems?
● Apply the “Principles of Chaos” to tooling.
● Manage the heavy lifting.

You Must be This Tall to Ride?

Non-Critical
Service Owner.

Critical Service
Owner.

Chaos
Engineer.

How to fail well?
● Functioning fallbacks.
● Use Chaos to close gaps in

traditional testing methods.

How to help teams build more
resilient systems?

● Apply the “Principles of Chaos” to
tooling.

● Manage the heavy lifting.

How to stay up in spite of change and turmoil?
● Functional sharding for fault isolation.
● Tune RPC calls.
● Use Chaos to validate config and resiliency strategies.

You Can Either Curl Up In A Ball And Die…

Or You Can Stand Up And Say, “We’re Different.
We’re The Strong Ones, And You Can’t Break
Us!”

Haley Tucker
Senior Software Engineer
Chaos Engineering
@hwilson1204

