
Real-time Financials  
with Microservices and  
Functional Programming
Vitor Guarino Olivier 
vitor@nubank.com.br
@ura1a  
https://nubank.com.br/

MAIN PRODUCT
Live since September 2014

A TECHNOLOGY DRIVEN APPROACH TO
FINANCIAL SERVICES

CONTINUOUS DELIVERY

MICROSERVICES

INDEPENDENTLY AND CONTINUOUSLY
DEPLOYABLE

DECOUPLED AND EASY TO REPLACE

BOUNDED BY CONTEXT AND INDEPENDENTLY
DEVELOPED

WHAT HAPPENS WHEN WE NEED TO
COMBINE DATA ACROSS SEVERAL SERVICES?

ESPECIALLY IN REAL-TIME

- Running on AWS, 2 AZs, config as code,  
immutable infra, horizontally scalable,  
sharded by customers

SERVICE ARCHITECTURE

- Producer/Consumer to Kafka

- REST APIs

REST

- Written in Clojure (functional)

- Persistence with Datomic

DATOMIC

- Immutable, append-only database

- ACID on writes (atomic, consistent, isolated, durable)

 Lucas Cavalcanti & Edward Wible - Exploring four hidden superpowers of Datomic

- A database that works a lot like

The Problem

WE HAVE OVER 90 SERVICES

THE PROBLEM: 
A LOT OF BUSINESS LOGIC DEPENDS ON DATA

ACROSS MANY SERVICES

 Should I authorize a purchase? Should I block a card? Should I charge interest?

Purchases InterestChargebacksPayments Currencies

THE PROBLEM: 
WE ARE SHOWING THESE NUMBERS TO THE

CUSTOMER IN REAL TIME

THE PROBLEM: 
NO CANONICAL DEFINITION OF OUR KEY

NUMBERS

- Ad-hoc definitions created by analysts and engineers

- Analysis vs. operational definition gap

- Nubank, investors, customers, and regulators  
are all worried about the same numbers.

A BALANCE SHEET IS THE CANONICAL WAY
OF REPRESENTING FINANCIAL INFO

- We can apply generally accepted accounting principles  
(verifiable, unbiased)

- Conservation of money (every credit should have a debit)

- One of the original event-sourced systems

LIABILITY
ASSET

EQUITY

THE MODEL

- Entry: represents a debit and a credit to two book-accounts

- Meta-entity: it’s a reference to the external entity that originated the event

- Movement: a collection of entries. Maps one Kafka message to one db transaction

- Book-account: A customer owned balance sheet account 
ex: cash, prepaid, late, payable

-Algebraic Models For Accounting Systems  
by Salvador Cruz Rambaud and José Garcia Pérez

- Balance: cumulative sum of entries of a book account

https://www.amazon.com/Algebraic-Accounting-Systems-Salvador-Rambaud/dp/9814287113/ref=sr_1_1?s=books&ie=UTF8&qid=1496172863&sr=1-1&keywords=9789814287111

Double-entry accounting 
service

OUR GOAL FOR OUR ACCOUNTING LEDGER  
(aka DOUBLE-ENTRY SERVICE)

- High availability to other services, clients, and analysts in real-time

- Resilient to distributed systems craziness

- Traceability of when and why we were inconsistent (strong audit trail)

- Event-driven, via kafka. (we could subscribe to existing topics)

THE IDEAL FLOW

f(payload)

MOVEMENT[]

EVENT

ACID transaction

- Event ordering doesn’t matter

- No mutable state

- Needs to guarantee all events are
consumed

- Thread safe

{:purchase 
 {:id (uuid)  
 :amount 100.0M 
 :interchange 1M 
 :post-date "2016-12-01"}}

Initial Balances:  
Current Limit R$ 1000, Current Limit Offset R$ 1000

Final Balances:  
Current Limit: R$ 900, Current Limit: Offset R$ 900 
Settled Purchase: R$ 100, Payable: R$ 99, Interchange Revenue: R$ 1

[{:entry/id (uuid)  
 :entry/amount 100.0M 
 :entry/debit-account :asset/settled-purchase 
 :entry/credit-account :liability/payable 
 :entry/post-date "2016-12-01" 
 :entry/movement new-purchase}

recognize 
receivable/payable

 {:entry/id (uuid)  
 :entry/amount 100M 
 :entry/debit-account :liability/current-limit 
 :entry/credit-account :asset/current-limit 
 :entry/post-date "2016-12-01" 
 :entry/movement new-purchase}

reduce limit

{:entry/id (uuid)  
 :entry/amount 1M  
 :entry/debit-account :liability/payable 
 :entry/credit-account :pnl/interchange-revenue 
 :entry/post-date "2016-12-01" 
 :entry/movement new-purchase} 
]

recognize 
revenue

WE CAN'T GUARANTEE CONSISTENCY,  
BUT WE CAN MEASURE IT

f(payload)

MOVEMENT[]

ACID transaction

- Kafka Lag

- Service downtime

- Processing time

produced-at vs. consumed-at

post-date vs. produced-at

consumed-at vs. db/txInstant

PURE FUNCTIONS OF THE PAYLOAD
WON'T ALWAYS WORK

The Stateful Flow

{:payment 
 {:id (uuid)  
 :amount 150.00M 
 :post-date "2016-12-01"}}

[{:entry/id (uuid)  
 :entry/amount 100.0M 
 :entry/debit-account :asset/cash 
 :entry/credit-account :asset/late 
 :entry/post-date "2016-12-01" 
 :entry/movement new-payment}

amortize debt

 {:entry/id (uuid)  
 :entry/amount 100M 
 :entry/debit-account :asset/current-limit 
 :entry/credit-account :liability/current-limit 
 :entry/post-date "2016-12-01" 
 :entry/movement new-payment}

increase limit

{:entry/id (uuid)  
 :entry/amount 50M 
 :entry/debit-account :asset/cash 
 :entry/credit-account :liability/prepaid 
 :entry/post-date "2016-12-01" 
 :entry/movement new-payment} 
]

recognize 
prepaid amount

Initial Balances:  
Current Limit: R$ 900, Current Limit Offset: R$ 900 
Late: R$ 100, Payable: R$ 99, Interchange Revenue: R$ 1

Final Balances:  
Current Limit: R$ 1000, Current Limit Offset: R$ 1000 
Cash: R$ 150, Prepaid R$ 50, Payable: R$ 99, Interchange Revenue: R$ 1

{:payment 
 {:id (uuid)  
 :amount 150.00M 
 :post-date "2016-12-01"}}

[{:entry/id (uuid)  
 :entry/amount 100.0M 
 :entry/debit-account :asset/cash 
 :entry/credit-account :asset/late 
 :entry/post-date "2016-12-01" 
 :entry/movement new-payment}

amortize debt

 {:entry/id (uuid)  
 :entry/amount 100M 
 :entry/debit-account :asset/current-limit 
 :entry/credit-account :liability/current-limit 
 :entry/post-date "2016-12-01" 
 :entry/movement new-payment}

increase limit

{:entry/id (uuid)  
 :entry/amount 50M 
 :entry/debit-account :asset/cash 
 :entry/credit-account :liability/prepaid 
 :entry/post-date "2016-12-01" 
 :entry/movement new-payment} 
]

recognize 
prepaid amount

Initial Balances:  

Late: R$ 100

Final Balances:  

Cash: R$ 150, Prepaid R$ 50

THE STATEFUL FLOW

- Movements in the past will modify all future balances

- Adapters are a function of the event payload AND current balances

- Balances can’t change during calculations

- Can’t allow for data to be corrupted depending on the order of the events

INVARIANTS

INVARIANTS

- Some balances can’t coexist (no late alongside prepaid)

- We can establish invariants that must hold true at all times

- Some balances can’t be negative (cash)

- Some can’t be positive (credit-loss)

THE STATEFUL FLOW

EVENT

f(payload,)

ACID transaction

f()
VALID STATE?

FIX VIOLATION

INVARIANT VIOLATIONS?

NO

MOVEMENT[]
Cr: Late  
Dr: Cash 
R$ 150

Cr: Late 
Dr: Cash 
R$ 150

MOVEMENT WITH CORRECTION[]
Cr: Prepaid 

Dr: Late 
R$ 50

Initial Balances:  
Late: R$ 100

Final Balances:  
Cash: R$ 150, Prepaid R$ 50

[]
VIOLATIONS YES

Negative  
Late  

Balance

CHALLENGES

CHALLENGES

- Fixing invariants logic is extremely complex.

- Datomic indexing is tested until 10 billion facts.

- Datomic isn’t the best option for analytical workload, especially with sharded dbs

- Other services bugs may generate incorrect entries that will need to be fixed

GENERATIVE TESTING

- We generate random events from our schemas (bill, purchases, payments, etc)

- Write a function that describes a property that should always hold true  
instead of describing input and expected output,  

- Properties that should hold true are the same invariants that are guaranteed in prod

- Embed the least amount of domain logic assumptions

GENERATIVE TESTING

(def balances-property
 (prop/for-all [account (g/generator Account) 
 events (gen/vector (gen/one-of [(g/generator Purchase) 
 (g/generator Payment) 
 ...]))] 
 (->> datomic 
 (consume-all! account events) 
 :db-after 
 (balances-are-positive!)))

(fact (tc/quick-check 500 balances-property) => (th/embeds {:result true}))

(ns double-entry.controllers.rulebook-test 
 (:require [midje.sweet :refer :all]
 [clojure.test.check.properties :as prop] 
 [clojure.test.check :as tc] 
 [schema-generators.generators :as g]  
 [clojure.test.check.generators :as gen]))

MONITORING / REPLAY HISTORY TOOLING

- Other services have republish endpoints  
(same payload and meta data as original thanks to datomic)

- We set sanity checks to make sure events aren’t missing

- We have an endpoint that can retract all entries for a customer 
(resets business timeline, but not DB)

SHARDING BY CUSTOMER / TIME

- No cross customer entries allows for per customer sharding

- We shard the database by time fairly often.

- simple representation of the end state of the customer at a time shard:  
final balance of each of the book accounts

- As time passes, any single customer’s db will approach infinite datoms

ETL

extract logs

facts to table 
(one per
entity type)

tables stored

applies functions to generate balances

balances
on redshift*

* also accessible through metabase

The Result

Text placeholder

2015-01 2015-04 2015-07 2015-10 2015-01 2016-03

REAL TIME BALANCE SHEET

2 TIMELINES

ACTUAL (DB) TIME
audit trail / Datomic log
“when did we know”day 0 day 30 day 90

BUSINESS TIME
official version of events
uses business-relevant “post dates”
can correct after the fact

day 0 day 30

WHAT WE LIKE

- Canonical definition of our most important numbers

- Financial analysis applied at a the customer level in real-time

- Business-specific invariants provide safety

- Generative testing finds real bugs

- Ability to replay history for a customer without losing data

- Shardable by time and by customer

- Extensible to other products (some don’t require stateful approach)

- Inconsistency traceability allows us to react to it

42

nubank.com.br/jobs

vitor@nubank.com.br

@ura1a

https://gist.github.com/ura1a to get snippets of our domain!

THANK YOU!

http://nubank.com.br/jobs
mailto:vitor@nubank.com.br
https://gist.github.com/aew

