Real-time Financials

with Microservices and @@ hank
Functional Programming

Vitor Guarino Olivier
vitor@nubank.com.br
(@urala
https:/nubank.com.br/

MAIN PRODUCT

Live since September 2014

—~CHNOLOGY DRIVEN APPROACH TO
—-INANCIAL SERVICES
E—
A ~)

CONTINUOUS DELIVERY

MICROSERVICES

INDEPENDENTLY AND CONTINUOUSLY
DEPLOYABLE

DECOUPLED AND EASY TO REPLACE

BOUNDED BY CONTEXT AND INDEPENDENTLY
DEVELOPED

y

/- WHAT HAPPENS WHEN WE NEED TO
- COMBINE DATA ACROSS SEVERAL SERVICES?

ESPECIALLY IN REAL-TIME

SERVICE ARCHITECTURE

B b

—
- Written in Clojure (functional)

- Producer/Consumer to Kafka kafka | «———

- Persistence with Datomic

- REST APls T l

- Running on AWS, 2 AZs, config as code,
immutable infra, horizontally scalable,
sharded by customers

DATOMIC

_

- Immutable, append-only database
- A database that works a lot like .} glt

- ACID on writes (atomic, consistent, isolated, durable)

L ucas Cavalcanti & Edward Wible - Exploring four hidden superpowers of Datomic

18

—ron

ol

@@ bank

WE HAVE OVER 90 SERVICES

. . dinowrangler
credit-card-billing
. \\:‘::: :::\‘ r
T
e
\\\:::\
) surrender

double-entry

~
-~ \\
\\
-~

-~ -
\\ ~‘-

credit-card-accounts

===
acquisition

THE PROBLEM:
A LOT OF BUSINESS LOGIC DEPENDS ON DATA
ACROSS MANY SERVICES

_

Purchases Payments Chargebacks INnterest Currencies

Should | authorize a purchase? Should | block a card? Should | charge interest?

THE PROBLEM:
WE ARE SHOWING THESE NUMBERS TO THE
CUSTOMER IN REAL TIME

PROXIMAS FATURAS
R$ 500,00

© R$ 1.400,00

y

THE PROBLEM:
NO CANONICAL DEFINITION OF OUR KEY
NUMBERS

_

- Ad-hoc definitions created by analysts and engineers

- Analysis vs. operational definition gap

- Nubank, investors, customers, and regulators
are all worried about the same numbers.

y

A BALANCE SHEET IS THE CANONICAL WAY
OF REPRESENTING FINANCIAL INFO

- We can apply generally accepted accounting principles
(verifiable, unbiased)

- Conservation of money (every credit should have a debit)

- One of the original event-sourced systems

THE MODEL

_

- Book-account: A customer owned balance sheet account
ex: cash, prepaid, late, payable

- Entry: represents a debit and a credit to two book-accounts

- Balance: cumulative sum of entries of a book account

- Movement: a collection of entries. Maps one Katka message to one db transaction

- Meta-entity: it's a reference to the external entity that originated the event

-Algebraic Models For Accounting Systems
by Salvador Cruz Rambaud and Jose Garcia Perez

https://www.amazon.com/Algebraic-Accounting-Systems-Salvador-Rambaud/dp/9814287113/ref=sr_1_1?s=books&ie=UTF8&qid=1496172863&sr=1-1&keywords=9789814287111

oUD

c-Cf

SEenCe

TV aCCouUn

igle

@&D bank

y

OUR GOAL FOR OUR ACCOUNTING LEDGER
(aka DOUBLE-ENTRY SERVICE)

_

- Event-driven, via kafka. (we could subscribe to existing topics)

- High availability to other services, clients, and analysts in real-time

- Traceability of when and why we were inconsistent (strong audit trail)

- Resilient to distributed systems craziness

J THE IDEAL FLOW

- TN E

EVENT

- No mutable state

e

f(payload)

- Event ordering doesn’'t matter

- Thread safe

[] MOVEMENT

ACID transaction

- Needs to guarantee all events are
consumed

V

INitial Balances:
Current Limit R$ 1000, Current Limit Offset R$ 1000

{:purchase
{:id (uuid)
ramount 100.0M

: interchange 1M
:post—-date "2016-12-01"}}

[{:entry/id (uuid)
:rentry/amount 100.0M
rentry/debit-account :asset/settled-purchase recognize
rentry/credit—-account :liability/payable receivable/payable
rentry/post—date "2016-12-01"
v rentry/movement new-purchase}
{:entry/id (uuid)
rentry/amount 100M
rentry/debit—-account :liability/current-limit duce limi
rentry/credit-account :asset/current-limit reduce fimit
g rentry/post-date "2016-12-01"
rentry/movement new—purchase}
{:entry/id (uuid)
:rentry/amount 1M
rentry/debit-account :liability/payable .
:entry/credit—-account :pnl/interchange-revenue recoghize
:entry/post—-date "2016-12-01" revente
rentry/movement new-purchase}

~Final Balances:
Current Limit: R$ 900, Current Limit: Offset R$ 900

Settled Purchase: R$ 100, Payable: R$ 99, Interchange Revenue: R$ 1

J WE CAN'T GUARANTEE CONSISTENCY,

BUT WE CAN MEASURE IT

— el

- Service downtime -

post-date vs. produced-at

O f(payload)

- Kaftka Lag

oroduced-at vs. consumed-at ® []
MOVEMENT

- Processing time , ACID transaction

consumed-at vs. db/txInstant v

PURE FUNCTIONS OF THE PAYLOAD
WON'T ALWAYS WORK

ne St

OV

@@ bank

INnitial Balances:
Current Limit: R$ 900, Current Limit Offset: R$ 900
Late: R$ 100, Pavable: R$ 99, Interchange Revenue: R$ 1

{:payment
{:id (uuid)
ramount 150.00M
:post-date "2016-12-01"}}
[{:entry/id (uuid)
rentry/amount 100.0M
:entry/debit-account :asset/cash
rentry/credit-account :asset/late amortize debt
rentry/post—date "2016-12-01"
v :entry/movement new—payment }
{:entry/id (uuid)
rentry/amount 100M

rentry/debit—-account :asset/current-limit

rentry/credit-account :liability/current-limit increase limit

g rentry/post-date "2016-12-01"
rentry/movement new—payment }
{:entry/id (uuid)
entry/amount 50M

:entry/debit-account :asset/cash
entry/credit—-account :liability/prepaid
rentry/post—-date "2016-12-01"
:entry/movement new—payment}

recognize
prepaid amount

Final Balances:
Current Limit: R$ 1000, Current Limit Offset: R$ 1000
Cash: R$ 150, Prepaid R$ 50, Pavable: R$ 99, Interchange Revenue: R$ 1

INitial Balances:

Late: R$ 100

{:payment
{:id (uuid)
ramount 150.00M
:post-date "2016-12-01"}}
[{:
\/
{
>

{:e

rentry/post—date

rentry/post—date

entry/id (uuid)

:rentry/amount 100.0M
:entry/debit-account :asset/cash
rentry/credit—-account :asset/late

"2016-12-01"

:entry/movement new—payment}
rentry/id (uuid)
rentry/amount 100M

rentry/debit—-account :asset/current-limit
rentry/credit-account :liability/current-limit

"2016-12-01"

:entry/movement new—payment}
ntry/id (uuid)
rentry/amount S50M

:entry/debit-account :asset/cash
:entry/credit—-account :liability/prepaid

:entry/post—-date
rentry/movement

Final Balances:

Prepaid R$ 50

"2016-12-01"
new—payment}

amortize debt

increase limit

recognize
prepaid amount

THE STATEFUL FLOW

- Adapters are a function of the event payload AND current balances

- Balances can’t change during calculations

- Movements in the past will modify all future balances

- Can’'t allow for data to be corrupted depending on the order of the events

INVARIANTS

INVARIANTS

- We can establish invariants that must hold true at all times

- Some balances can’t coexist (no late alongside prepaid)

- Some balances can’t be negative (cash)

- Some can’t be positive (credit-10ss)

y

_

VIOLATIONS

Negative [] >
Late

Balance

\ 4

INnitial Balances:
Late: R$ 100

THE STATEFUL FLOW

INVARIANT VIOLATIONS?

FIX VIOLATION ' '

[=

Cr: Late Cr: Prepaid

Dr: Cash
R$ 150

Dr: Late
R$ 50

YES

@,
N

NO

] MOVEMENT WITH CORRECTION

S "N

EVENT VALID STATE?

T ,
O f(payload\/)

Cr: Late

—] MOVEMENT Pr: Cash
RS 150

) U4 ACID transaction

Final Balances:
Cash: R$ 150, Prepaid R$ 50

@@ bank

CHALLENGES

_

- Fixing Iinvariants logic is extremely complex.

- Other services bugs may generate incorrect entries that will need to be fixeo

- Datomic indexing Is tested until 10 billion facts.

- Datomic isn’t the best option for analytical workload, especially with sharded dbs

GENERATIVE TESTING

- Write a function that describes a property that should always hold true
iNstead of describing input and expected output,

- Properties that should hold true are the same invariants that are guaranteed in prod

- We generate random events from our schemas (bill, purchases, payments, etc)

- Embed the least amount of domain logic assumptions

GENERATIVE TESTING

_

(def balances-property
(prop/for-all [account (g/generator Account)
events (gen/vector (gen/one-of [(g/generator Purchase)
(g/generator Payment)
eenl))]
(=>> datomic

(consume-all! account events)

:db—-after

(balances-are-positive!)))

(fact (tc/quick-check 500 balances-property) => (th/embeds {:result true}))

MONITORING / REPLAY HISTORY TOOLING

- We set sanity checks to make sure events aren’t missing

- Other services have republish endpoints
(same payload and meta data as original thanks to datomic)

- We have an endpoint that can retract all entries for a customer
(resets business timeline, but not DB)

SHARDING BY CUSTOMER / TIME

- No cross customer entries allows for per customer sharding
- As time passes, any single customer’s db will approach infinite datoms

- simple representation of the end state of the customer at a time shard:
final balance of each of the book accounts

- We shard the database by time fairly often.

ETL

facts to table

(one per
extract logs entity type) S APACHE l

_— amazon §3 ——p pQ

webservices™
—
- applies functions to generate balances

™

tables stored

APACHE‘%ﬁ

p Qr ™ sel?)lsgrﬁlgeg” s 3
Amezon Redshift
balances
on redsnifrt® -

-4~ * also accessible through metabase

18

—eSuUlt

@@ bank

REAL TIME BALANCE SHEET

User: 54ca1890-e109-42bc-bb07- User: 554b8ceB-€631-4258-aaf)- Lser: 55633386-1ade-4190-ac81- User: 5596bJ31-227b-41f4-add0-
bcec633090e0 4d8c957191al 3cf55b0a6837 f197€e11a077
_ tranaitory bank
Cue day: 5 Due day: 10 Due cay: 15 Duz day: 20
All o Creation Month: 20150 Creation Month: 201505 Craation NMonth: 201509 Creztion Manth: 20" 601

2015—01’ P Do 2015-04 2015-07 2015-10 2015-01 2016-03

2 TIMELINES

ACTUAL (DB) TIME

audit trail / Datomic log
day O day 30 day 90 “when did we know”

-

BUSINESS TIME

official version of events
uses business-relevant “post dates”
can correct after the fact

y

WHAT WE LIKE

- Canonical definition of our most important numibers

- Financial analysis applied at a the customer level in real-time
- Inconsistency traceability allows us to react to it

- Business-specific invariants provide safety

- Generative testing finds real bugs

- Ability to replay history for a customer without losing data

- Shardable by time and by customer

- Extensible to other products (some don’t require stateful approach)

" https://gist.github.com/urala to get snippets of
2 g g4 e

N

http://nubank.com.br/jobs
mailto:vitor@nubank.com.br
https://gist.github.com/aew

