
Reactive Programming for
Java Developers

Rossen Stoyanchev

About Me
❖ Spring Framework committer

❖ Spring MVC, WebSocket messaging

❖ Spring 5 Reactive

Long-Running
Shift to
Concurrency

10 years ago

Self-sufficient apps,

App server,

Keep it simple, don’t distribute

Today
Independent services,

Cloud environment,

Distributed apps

Changing expectations

Internet scale & resilience,

Efficient use of resources,

Latency is common

Impact on programming model

Imperative logic not so simple when latency is the norm

Forced to deal with asynchronicity

Limits of scale

There is another way

Fundamentally async & non-blocking

Using very few threads

Major shift but also major benefits

Reactive
Programming?

In this talk

How would we design an async API in Java ?

Can we do better ?

Introducing reactive libraries

Spring reactive experience

Design async API in Java

Return one thing

...

...

Usage

Return it async style

...

May occur in
different
thread

Usage

Ugh

CompletableFuture (JDK 1.8)
❖ Future with actions

❖ Actions trigger when Future completes

❖ Callback mechanism

Return it async style with Java 1.8

...

...

Usage

Async callback!

Usage

Requires null
check

Return many

...

...

Return many

...

... No callback till all
users collected

Return many

...

... It may be too many

Return nothing

...

...

Return nothing

...

...

Async
notification:
success or
failure?

Can we do better?

❖ One notification per data item

❖ One notification for either completion or error

Async results as a stream

Return Type Description Notifications
void Success onComplete()

void Failure onError(Throwable)

User Match onNext(User), onComplete()

User No match onComplete()

User Failure onError(Throwable)

List<User> Two matches onNext(User), onNext(User), onComplete()

List<User> No match onComplete()

List<User> Failure onError(Throwable)

➢ Functional, declarative programming model

➢ Combine, transform, reduce sequences

➢ Focus on what, not how

Stream abstraction

➢ Great example of the benefits of a stream API

➢ However built for collections mainly

➢ Pull-based, usable once

Java 8 Stream

➢ Latency-sensitive data streams

➢ Infinite sequences

➢ Push-based notifications

Beyond collections

Reactive Libraries

Reactive library?
➢ Stream-like API similar to Java 8

➢ Suited for any data sequence

➢ Latency-sensitive, infinite, collections

Project Reactor
➢ Reactive Streams foundation for the JVM

➢ API similar to ReactiveX

➢ Easy to bridge to Java 8 Stream

https://github.com/reactive-streams/reactive-streams-jvm#goals-design-and-scope
https://github.com/reactive-streams/reactive-streams-jvm#goals-design-and-scope
http://reactivex.io/

Flux -- sequence of 0..N

Mono -- sequence of 0..1

Flux to Java Stream

Mono to CompletableFuture

More than a stream API
➢ Reactor is back-pressure ready

➢ Reactive Streams spec

➢ Producers must not overwhelm consumers

❖ Industry collaboration

❖ Small API, rules, TCK

❖ Reactive interoperability across libraries

Reactive Streams Spec

“No single best fluent async/parallel API. CompletionStage
best supports continuation-style programming on futures,
and java.util.stream best supports (multi-stage, possibly-
parallel) "pull" style operations on the elements of
collections. Until now, one missing category was "push"
style operations on items as they become available from an
active source.“

Reactive Streams included in Java 9

Doug Lea, from initial announcement

http://cs.oswego.edu/pipermail/concurrency-interest/2015-January/013641.html

❖ Interfaces in java.util.concurrent.Flow

❖ SubmissionPublisher
standalone bridge to Reactive Streams

❖ Tie-ins to CompletableFuture and Stream

Reactive Streams in Java 9

Reactive Streams API

public interface Publisher<T> {

 void subscribe(Subscriber<? super T> subscriber);

}

Reactive Streams API

public interface Subscriber<T> {

 void onSubscribe(Subscription sub);

 void onNext(T item);

 void onError(Throwable ex);

 void onComplete();

}

Reactive Streams API

public interface Subscriber<T> {

 void onSubscribe(Subscription sub);

 void onNext(T item);

 void onError(Throwable ex);

 void onComplete();

}

Reactive repository

Using the reactive repository

Using the reactive repository

Subscriber triggers flow of data

Using the reactive repository

Consume all data by default

Output
onSubscribe

request(unbounded)

onNext(User: Jason)

onNext(User: Jay)

...

onComplete()

Usage

Consume two at a time

Output

onSubscribe

request(2)

onNext(User: Jason)

onNext(User: Jay)

request(2)

onNext(User: Joe)

onNext(User: John)

...

❖ Currently 2.5 M4 (might change to 3.0 label)

❖ GA release scheduled for July

❖ Hands-on exercise, blog post series

More on Reactor

https://github.com/reactor/lite-rx-api-hands-on
https://spring.io/blog/2016/06/07/notes-on-reactive-programming-part-i-the-reactive-landscape
https://github.com/reactor/lite-rx-api-hands-on

Reactive Spring

Reactive
Spring MVC ?

Annotated controllers

Controller Methods

Spring MVC Spring Web Reactive

Annotated controllers

...

...
Mono<Object>

Spring MVC Spring Web Reactive

Servlet API ???

@MVC

Spring MVC Spring Web Reactive

Servlet API ???

Servlet Container ???

@MVC

Spring Web Reactive

@MVC

HTTP
Reactive Streams

Servlet 3.1 Reactor I/O RxNetty

spring-reactive

Spring Framework 5.0 M1

https://github.com/spring-projects/spring-reactive
https://github.com/spring-projects/spring-reactive

More Reactive Efforts

Reactive Journey

@rstoya05

