
Rust’s Journey to Async/Await
Steve Klabnik

Hi, I’m Steve!

● On the Rust
team

● Work at
Cloudflare

● Doing two
workshops!

What is async?

Parallel: do multiple things at
once

Concurrent: do multiple
things, not at once

Asynchronous: actually
unrelated! Sort of...

“Task”
A generic term for some
computation running in a
parallel or concurrent system

Parallel
Only possible with multiple

cores or CPUs

Concurrent
Pretend that you have multiple

cores or CPUs

Asynchronous
A word we use to describe
language features that enable
parallelism and/or
concurrency

Even more
terminology

Cooperative vs
Preemptive
Multitasking

Cooperative
Multitasking Each task decides when to

yield to other tasks

Preemptive
Multitasking The system decides when to

yield to other tasks

Native vs green
threads

Native threads Tasks provided by the
operating system

Sometimes called “1:1 threading”

Green Threads Tasks provided by your
programming language

Sometimes called “N:M threading”

Native vs Green threads

Native thread advantages:

● Part of your system; OS handles
scheduling

● Very straightforward,
well-understood

Native thread disadvantages:

● Defaults can be sort of heavy
● Relatively limited number you can

create

Green thread advantages:

● Not part of the overall system;
runtime handles scheduling

● Lighter weight, can create many,
many, many, many green threads

Green thread disadvantages:

● Stack growth can cause issues
● Overhead when calling into C

Why do we care?

Apache
“Pre-fork”

Control Process

Child Process

Apache
“worker”

Control Process

Child Process

Child Thread Child Thread

Child Thread Child Thread

Thread pool

Let’s talk about
Rust

Rust was built to
enhance Firefox,
which is an HTTP
client, not server

“Synchronous,
non-blocking
network I/O”

Isn’t this a
contradiction in
terms?

Synchronous Asynchronous

Blocking Old-school implementations Doesn’t make sense

Non-blocking Go, Ruby Node.js

Tons of options

Synchronous, blocking

● Your code looks like it blocks, and
it does block

● Very basic and straightforward

Asynchronous, non-blocking

● Your code looks like it doesn’t
block, and it doesn’t block

● Harder to write

Synchronous, non-blocking

● Your code looks like it blocks, but it
doesn’t!

● The secret: the runtime is
non-blocking

● Your code still looks straightforward,
but you get performance benefits

● A common path for languages built
on synchronous, blocking I/O to gain
performance while retaining
compatibility

Not all was well in
Rust-land

A “systems
programming language”
that doesn’t let you use
the system’s threads?

Not all was well in
Rust-land

Rust 1.0 was
approaching

Ship the minimal
thing that we
know is good

Rust 1.0 was
released! 🎉

… but still, not all
was well in
Rust-land

People 💖 Rust

People want to
build network
services in Rust

Rust is supposed
to be a
high-performance
language

Rust’s I/O model
feels retro, and
not performant

The big problem
with native
threads for I/O

CPU bound vs
I/O bound

CPU Bound
The speed of completing a task
is based on the CPU crunching
some numbers

My processor is working hard

I/O Bound
The speed of completing a task
is based on doing a lot of input
and output

Doing a lot of networking

When you’re
doing a lot of I/O,
you’re doing a lot
of waiting

When you’re
doing a lot of
waiting, you’re
tying up system
resources

Go
Asynchronous I/O

with green threads

(Erlang does this too)

Main Process

Child Thread Child Thread

Child Thread Child Thread

Green threads

Native vs Green threads

Native thread advantages:

● Part of your system; OS handles
scheduling

● Very straightforward,
well-understood

Native thread disadvantages:

● Defaults can be sort of heavy
● Relatively limited number you can

create

Green thread advantages:

● Not part of the overall system;
runtime handles scheduling

● Lighter weight, can create many,
many, many, many green threads

Green thread disadvantages:

● Stack growth can cause issues
● Overhead when calling into C

PREVIOUSLY

A “systems
programming language”
that has overhead when
calling into C code?

Luckily, there is
another way

Nginx
Asynchronous I/O

Event Loop

Evented I/O
requires
non-blocking APIs

Blocking vs non-blocking

“Callback hell”

Promises

let myFirstPromise = new Promise((resolve, reject) => {
 setTimeout(function(){
 resolve("Success!");
 }, 250);
});

myFirstPromise.then((successMessage) => {
 console.log("Yay! " + successMessage);
});

Promises

let myFirstPromise = new Promise((resolve, reject) => {
 setTimeout(function(){
 resolve("Success!");
 }, 250);
});

myFirstPromise.then((successMessage) => {
 console.log("Yay! " + successMessage);
}).then((...) => {
 //
}).then((...) => {
 //
});

Futures 0.1

pub trait Future {
 type Item;
 type Error;

 fn poll(&mut self) -> Poll<Self::Item, Self::Error>;
}

id_rpc(&my_server).and_then(|id| {
 get_row(id)
}).map(|row| {
 json::encode(row)
}).and_then(|encoded| {
 write_string(my_socket, encoded)
})

Promises and Futures are different!

● Promises are built into JavaScript
● The language has a runtime
● This means that Promises start

executing upon creation
● This feels simpler, but has some

drawbacks, namely, lots of
allocations

● Futures are not built into Rust
● The language has no runtime
● This means that you must submit

your futures to an executor to start
execution

● Futures are inert until their poll
method is called by the executor

● This is slightly more complex, but
extremely efficient; a single,
perfectly sized allocation per task!

● Compiles into the state machine
you’d write by hand with evented I/O

Futures 0.1: Executors

use tokio;

fn main() {
 let addr = "127.0.0.1:6142".parse().unwrap();
 let listener = TcpListener::bind(&addr).unwrap();

 let server = listener.incoming().for_each(|socket| {
 Ok(())
 })
 .map_err(|err| {
 println!("accept error = {:?}", err);
 });

 println!("server running on localhost:6142");

 tokio::run(server);
}

We used
Futures 0.1 to
build stuff!

The design had
some problems

Futures 0.2

trait Future {
 type Item;
 type Error;

 fn poll(&mut self, cx: task::Context) ->
Poll<Self::Item, Self::Error>;
}

No implicit context, no more need for thread local storage.

// with callback
request('https://google.com/', (response) => {
 // handle response
})

// with promise
request('https://google.com/').then((response) => {
 // handle response
});

// with async/await
async function handler() {
 let response = await request('https://google.com/')
 // handle response
}

Async/await

Async/await lets you
write code that feels
synchronous, but is
actually asynchronous

Async/await is more
important in Rust than in
other languages
because Rust has no
garbage collector

Rust example: synchronous

fn read(&mut self, buf: &mut [u8]) -> Result<usize, io::Error>

let mut buf = [0; 1024];
let mut cursor = 0;

while cursor < 1024 {
 cursor += socket.read(&mut buf[cursor..])?;
}

Rust example: async with Futures

fn read<T: AsMut<[u8]>>(self, buf: T) ->
 impl Future<Item = (Self, T, usize), Error = (Self, T, io::Error)>

… the code is too big to fit on the slide

The main problem: the borrow checker doesn’t understand asynchronous
code.

The constraints on the code when it’s created and when it executes are
different.

Rust example: async with async/await

async {
 let mut buf = [0; 1024];
 let mut cursor = 0;

 while cursor < 1024 {
 cursor += socket.read(&mut buf[cursor..]).await?;
 };

 buf
}

async/await can teach the borrow checker about these constraints.

Not all futures can error

trait Future {
 type Item;
 type Error;

 fn poll(&mut self, cx: task::Context) ->
Poll<Self::Item, Self::Error>;
}

std::future

pub trait Future {
 type Output;

 fn poll(self: Pin<&mut Self>, cx: &mut Context)
-> Poll<Self::Output>;
}

Pin is how async/await teaches the borrow checker.

If you need a future that errors, set Output to a Result<T, E>.

… but one more
thing...

What syntax for async/await?

async is not an issue

JavaScript and C# do:

await value;

But what about ? for error handling?

await value?;

await (value?);
(await value)?;

What syntax for async/await?

What about chains of await?

(await (await value)?);

We argued and
argued and
argued and
argued and
argued and ar...

What syntax for async/await?

async {
 let mut buf = [0; 1024];
 let mut cursor = 0;

 while cursor < 1024 {
 cursor += socket.read(&mut buf[cursor..]).await?;
 };

 buf
}

// no errors
future.await
// with errors
future.await?

… there’s actually
even one last
issue that’s
popped up

… this talk is
already long
enough

Additional Ergonomic improvements

use runtime::net::UdpSocket;

#[runtime::main]
async fn main() -> std::io::Result<()> {
 let mut socket = UdpSocket::bind("127.0.0.1:8080")?;
 let mut buf = vec![0u8; 1024];

 println!("Listening on {}", socket.local_addr()?);

 loop {
 let (recv, peer) = socket.recv_from(&mut buf).await?;
 let sent = socket.send_to(&buf[..recv], &peer).await?;
 println!("Sent {} out of {} bytes to {}", sent, recv, peer);
 }
}

WebAssembly?

WebAssembly?
Promise

Future

Promise

Finally landing in
Rust 1.37

Or maybe 1.38

Finally landing in
Rust 1.37

Or maybe 1.38

Finally landing in
Rust 1.38!!!!1

Lesson: a
world-class
I/O system
implementation
takes years

Lesson: different
languages have
different
constraints

Thank you!

@steveklabnik

