Rust’s Journey to Async/Await
Steve Klabnik

Hi, I'm Steve!

On the Rust
team

Work at
Cloudflare
Doing two
workshops!

without

without butts, dreams dry up

@withoutboats Follows you

love and rage

Joined March 2015

267 Following 2,023 Followers

03) Followed by Rust Secure Code WG, David Tolnay, and 194 others you follow

What Is async?

Parallel: do multiple things at
once

Concurrent: do multiple
things, not at once

Asynchronous: actually
unrelated! Sort of...

“T k" A generic term for some
asS computation runningina

parallel or concurrent system

Parallel

Only possible with multiple
cores or CPUs

Concurrent

Pretend that you have multiple
cores or CPUs

A word we use to describe

ASynCh ronous language features that enable

parallelism and/or
concurrency

Even more
terminology

Cooperative vs
Preemptive
Multitasking

Cooperative
M U'_t|task| ng Each task decides when to

yield to other tasks

Preemptive
M U'_t|task| ng The system decides when to

yield to other tasks

Native vs green
threads

Native th reads Tasks provided by the

operating system

Sometimes called “1:1 threading”

Green Th reads Tasks provided by your

programming language

Sometimes called “N:M threading”

Native vs Green threads

Native thread advantages: Green thread advantages:
e Part of your system; OS handles e Not part of the overall system;
scheduling runtime handles scheduling
e \Very straightforward, e Lighter weight, can create many,
well-understood many, many, many green threads
Native thread disadvantages: Green thread disadvantages:
e Defaults can be sort of heavy e Stack growth can cause issues
e Relatively limited number you can e Overhead when callinginto C

Ccreate

Why do we care?

The C10K problem

[Help save the best Linux news source on the web -- subscribe to Linux Weekly News!]

It's time for web servers to handle ten thousand clients simultaneously, don't you think? After
all, the web is a big place now.

And computers are big, too. You can buy a 1000MHz machine with 2 gigabytes of RAM and
an 1000Mbit/sec Ethernet card for $1200 or so. Let's see - at 20000 clients, that's S0KHz,

100Kbytes, and S0Kbits/sec per client. It shouldn't take any more horsepower than that to take
four kilobytes from the disk and send them to the network once a second for each of twenty
thousand clients. (That works out to $0.08 per client, by the way. Those $100/client licensing
fees some operating systems charge are starting to look a little heavy!) So hardware is no
longer the bottleneck.

In 1999 one of the busiest ftp sites, cdrom.com, actually handled 10000 clients simultaneously
through a Gigabit Ethernet pipe. As of 2001, that same speed is now being offered by several
ISPs, who expect it to become increasingly popular with large business customers.

Apache

“Pre-fork”

Apache

“worker”

Let’s talk about
Rust

Rust was built to
enhance Firefox,
whichisan HTTP
client, not server

C @ https://doc.rust-lang.org/0.9/green/index.html

‘Search documentation...

Module green

The "green scheduling" library

This library provides M:N threading for rust programs. Internally this has the implementation of a green scheduler g
allocation strategy.

This can be optionally linked in to rust programs in order to provide M:N functionality inside of 1:1 programs.

MODULES

basic This is a basic event loop implementation not meant for any "real purposes" other than testing the

context

C ® https://doc.rust-lang.org/0.9/std/io/net/index.html

[Search documentation...

Module std::io::net

Synchronous, non-blocking network I/O. Synchronous, non-blocking network 1/O.

REEXPORTS
std::io

pub use self::addrinfo::get_host_addresses;

MODULES

buffered
comm_adapters addrinfo ~ Synchronous DNS Resolution

MODULES

extensions ip
flate

fs

io_error

Mem Named pipes
net

pipe

“Synchronous,
nhon-blocking
hetwork |/0"

Isn’t this a
contradiction in
terms?

Synchronous Asynchronous
Blocking Old-school implementations | Doesn’t make sense

Non-blocking Go, Ruby Node.js

Tons of options

Synchronous, blocking Synchronous, non-blocking
e Your code looks like it blocks, and e Your code looks like it blocks, but it
it does block doesn’t!
e Very basic and straightforward ® Thesecret: the runtime s
non-blocking
Asynchronous, non-blocking e Your code still looks straightforward,

but you get performance benefits
e Acommon path for languages built
on synchronous, blocking 1/0 to gain
e Harderto write performance while retaining
compatibility

e Your code looks like it doesn’t
block, and it doesn’t block

Not all was well in
Rust-land

[http://www.rust-lang.org/

3,772 captures
4 Sep 2011 - 24 Jun 2019

Docs (Nightly) Docs (Alpha)

Book Book
Reference Reference
APl docs APl docs
All docs All docs

Rust Is a systems programming language
that runs blazingly fast, prevents almost all
crashes™, and eliminates data races.

Show me more!

A "systems
programming language”
that doesn't let you use
the system’s threads?

C @ https://doc.rust-lang.org/0.11.0/native/index.html

IClick or press 'S' to search, '?' for more options...

Crate native | experimental

The native I/O and threading crate

Crates This crate contains an implementation of 1:1 scheduling for a "native" runtime.

blocking version of |/O.

Starting with libnative

C @ https://doc.rust-lang.org/0.11.0/green/index.html

Click or press 'S' to search, '?' for more options...

Crate green | experimental

The "green scheduling” library

Crates This library provides M:N threading for rust programs. Inte

switching and a stack-allocation strategy. This can be opti
programs.

leEkiEie Architecture

In today's Rust, there is a single I/O APl -- std::io -- that provides blocking operations only and works with both
threading models. Rust is somewhat unusual in allowing programs to mix native and green threading, and furthermore
allowing some degree of interoperation between the two. This feat is achieved through the runtime system -- librustrt -

- which exposes:

e The Runtime trait, which abstracts over the scheduler (via methods like deschedule and spawn_sibling) as well as
the entire I/O API (via local_io).

e The rtio module, which provides a number of traits that define the standard /O abstraction.

e The Task struct, which includes a Runtime trait object as the dynamic entry point into the runtime.

In this setup, libstd works directly against the runtime interface. When invoking an I/O or scheduling operation, it first
finds the current Task, and then extracts the Runtime trait object to actually perform the operation.

Not all was well in
Rust-land

GitHub, Inc. [US] https://github.com/rust-lang/rfcs/blob/master/text/0230-remove-runtime.md

Summary

This RFC proposes to remove the runtime system that is currently part of the standard library, which currently allows the
standard library to support both native and green threading. In particular:

e The libgreen crate and associated support will be moved out of tree, into a separate Cargo package.
e The librustrt (the runtime) crate will be removed entirely.
e The std::io implementation will be directly welded to native threads and system calls.

e The std::io module will remain completely cross-platform, though separate platform-specific modules may be
added at a later time.

Rust 1.0 was
approaching

Ship the minimal
thing that we
know is good

Rust 1.0 was,
released!

.. put still, not all
was well in
Rust-land

People ,*;-“(Rust

People want to
build network
services In Rust

Rust is supposed
to be a
high-performance
language

Rust’'s |/0 model
feels retro, and
not performant

The big problem
with native
threads for 1/0

CPU bound vs
|/0 bound

The speed of completing a task

CPU Bound is based on the CPU crunching

some numbers

My processor is working hard

The speed of completing a task

I/O Bound is based on doing a lot of input

and output

Doing a lot of networking

When you're
doing a lot of 170,
you're doing a lot
of waiting

When you're
doing a lot of
waiting, you're
tying up system
resources

Go

Asynchronous I/O
with green threads

(Erlang does this too)

Native vs Green threads

PREVIOUSLY-~

e Partof your system; OS h Not part of the overall system;

scheduling runtime handles scheduling
e \Very straightforward, e Lighter weight, can create many,
well-understood many, many, many green threads
Native thread disadvantages: Green thread disadvantages:

e Defaults can be sort of heavy e Stack growth can cause issues
e Relatively limited » e Overhead when callinginto C
create

A "systems
programming language”
that has overhead when
calling into C code?

Luckily, there is
another way

Nginx

Asynchronous I/O

wie s i bt

» Server-sioe Javascript

» Bult on Google's V8

» Evented. non-blocking 1O Simiar 1o
EventiMachne or Taisted

» CommonlS mocule system

« BOO0O ines of C'Ces, 2000 nes o
Javascrpt, 14 comnbutons

o) 0:207/48:31

Ryan Dahl: Original Node.js presentation

166,252 views il 25K &1 27 . SHARE =4 SAVE .o

Evented |/0
requires
hon-blocking APIs

Blocking vs non-blocking

Using the File System module as an example, this is a synchronous file read:

const fs = require('fs');

const data = fs.readFileSync('/file.md'); // blocks here until fi

And here is an equivalent asynchronous example:

const fs = require('fs');

fs.readFile('/file.md', (err, data) => {

if (err) throw err;

¥

“Callback hell”

callbackhell.com

Callback Hell

A guide to writing asynchronous JavaScript programs

What is "callback hell"?

Asynchronous JavaScript, or JavaScript that uses callbacks, is hard to get right intuitively. A lot of code
ends up looking like this:

fs.readdir(source, function (err, files) {
if (err) {
console.log('Error finding files: ' + err)
} else {
files.forEach(function (filename, fileIndex) {
console.log(filename)
gm(source + filename).size(function (err, values) {
if (err) {
console.log('Error identifying file size: ' + err)
} else {
console.log(filename + ' : ' + values)
aspect = (values.width / values.height)
widths.forEach(function (width, widthIndex) {
height = Math.round(width / aspect)
console.log('resizing ' + filename + 'to ' + height +
this.resize(width, height).write(dest + 'w' + width +
if (err) console.log('Error writing file: ' + err)
)]
}.bind(this))

x' + height)
'_" + filename, function(err) {

A Promise is a proxy for a value not necessarily known when the promise is created. It allows
you to associate handlers with an asynchronous action's eventual success value or failure
reason. This lets asynchronous methods return values like synchronous methods: instead of

immediately returning the final value, the asynchronous method returns a promise to supply the

value at some point in the future.

A Promise is in one of these states:

e pending: initial state, neither fulfilled nor rejected.
o fulfilled. meaning that the operation completed successfully.

e rejected. meaning that the operation failed.

Promises

let myFirstPromise = new Promise((resolve, reject) => {
setTimeout(function(){
resolve("Success!");

}, 250);

1)

myFirstPromise.then((successMessage) => {
console.log("Yay! " + successMessage);

1)

Promises

let myFirstPromise = new Promise((resolve, reject) => {
setTimeout(function(){
resolve("Success!");

}, 250);
1)
myFirstPromise.then((successMessage) => {
console.log("Yay! " + successMessage);
}).then((...) => {
//
}).then((...) => {

//

Your Server as a Function

Marius Eriksen

Twitter Inc.
marius@twitter.com

Abstract

Building server software in a large-scale setting, where systems ex-
hibit a high degree of concurrency and environmental variability, is
a challenging task to even the most experienced programmer. Ef-
ficiency, safety, and robustness are paramount—goals which have
traditionally conflicted with modularity, reusability, and flexibility.

We describe three abstractions which combine to present a pow-
erful programming model for building safe, modular, and efficient
server software: Composable futures are used to relate concurrent,
asynchronous actions; services and filters are specialized functions

Services Systems boundaries are represented by asynchronous
functions called services. They provide a symmetric and uni-
form API: the same abstraction represents both clients and
servers.

Filters Application-agnostic concerns (e.g. timeouts, retries, au-
thentication) are encapsulated by filters which compose to build
services from multiple independent modules.

Server operations (e.g. acting on an incoming RPC or a time-
out) are defined in a declarative fashion, relating the results of the

https://aturon.github.io/blog/2016/08/11/futures/

Aaron Turon Archive Feed

Zero-cost futures in Rust

11 Aug 2016

One of the key gaps in Rust’'s ecosystem has been a strong story for fast and productive
asynchronous I/0. We have solid foundations, like the mio library, but they’re very low level:
you have to wire up state machines and juggle callbacks directly.

We’ve wanted something higher level, with better ergonomics, but also better composability,
supporting an ecosystem of asynchronous abstractions that all work together. This story might
sound familiar: it's the same goal that’s led to the introduction of futures (aka promises) in
many languages, with some supporting async/await sugar on top.

A major tenet of Rust is the ability to build zero-cost abstractions, and that leads to one
additional goal for our async I/O story: ideally, an abstraction like futures should compile down
to something equivalent to the state-machine-and-callback-juggling code we’re writing today
(with no additional runtime overhead).

Futures 0.1

pub trait Future {
type Item;
type Error;

fn poll(&mut self) -> Poll<Self::Item, Self::Error>;
}

id_rpc(&my_server).and_then(|id| {
get_row(id)

}).map(|row| {
json: :encode(row)

}) .and_then(|encoded| {
write_string(my_socket, encoded)

})

Promises are built into JavaScript
The language has a runtime

This means that Promises start
executing upon creation

This feels simpler, but has some
drawbacks, namely, lots of
allocations

Promises and Futures are different!

Futures are not built into Rust

The language has no runtime

This means that you must submit
your futures to an executor to start
execution

Futures are inert until their poll
method is called by the executor
This is slightly more complex, but
extremely efficient; a single,
perfectly sized allocation per task!
Compiles into the state machine
you’d write by hand with evented I/0

Futures 0.1: Executors

use tokio;

fn main() {
let addr = "127.0.0.1:6142" .parse().unwrap();
let listener = TcpListener::bind(&addr).unwrap();

let server = listener.incoming().for_each(|socket| {

Ok (())
})

.map_err(|err| {
println!("accept error = {:?}", err);
)
println!("server running on localhost:6142");

tokio::run(server);

}

We used
Futures 0.1 to
build stuff!

The design had
some problems

Futures 0.2

trait Future {
type Item;
type Error;

fn poll(&mut self, cx: task::Context) ->
Poll<Self::Item, Self::Error>;

}

No implicit context, no more need for thread local storage.

4 aturon rust /® 36 points - 1yearago

\ 4 Would you suggest that the ecosystem goes through two breaking
changes (now and for 0.3) or should libraries like Tokio maintain support
for both 0.1 and 0.2 and then have a single breaking change when 0.3 is
released.

The latter. I consider 0.2 a "snapshot" that's good for experimentation but
shouldn't be used heavily, since stable 0.3 should be coming in a couple of
months or less.

Give Award Share Report Save

4 sdroege_ 28points - 1yearago

$ This seems to be counterproductive. If you want people to experiment
with the changes they need their dependencies using futures 0.2.
Otherwise any experimentation would only be possible for completely
standalone things and not even on top of tokio or hyper, and that would
limit the amount of feedback you get a lot. Especially with regards to
usability.

4 aturon rust /® 36 points - 1yearago e

\ 4 Would you suggest that the ecosystem goes through two breaking
changes (now and for 0.3) or should libraries like Tokio maintain support
for both 0.1 and 0.2 and then have a single breaking change when 0.3 is
released.

The latter. I consider 0.2 a "snapshot" that's good for experimentation but
shouldn't be used heavily, since stable 0.3 should be coming in a couple of
months or less.

Give Award Share Report Save

4 sdroege_ 28points - 1yearago

$ This seems to be counterproductive. If you want people to experiment
with the changes they need their dependencies using futures 0.2.
Otherwise any experimentation would only be possible for completely
standalone things and not even on top of tokio or hyper, and that would
limit the amount of feedback you get a lot. Especially with regards to
usability.

Async/await

// with callback
request('https://google.com/', (response) => {
// handle response

})

// with promise
request('https://google.com/").then((response) => {
// handle response

1)

// with async/await

async function handler() {
let response = await request('https://google.com/")
// handle response

}

Async/await lets you
write code that feels
synchronous, but is
actually asynchronous

Async/await is more
important in Rust than in
other languages
because Rust has no
garbage collector

Rust example: synchronous

fn read(&mut self, buf: &mut [u8]) -> Result<usize, io::Error>

let mut buf = [0; 1024];
let mut cursor = 0;

while cursor < 1024 {
cursor += socket.read(&mut buf[cursor..])?;
}

Rust example: async with Futures

fn read<T: AsMut<[u8]>>(self, buf: T) ->
impl Future<Item = (Self, T, usize), Error = (Self, T, io::Error)>

... the code is too big to fit on the slide

The main problem: the borrow checker doesn’t understand asynchronous
code.

The constraints on the code when it’s created and when it executes are
different.

Rust example: async with async/await

async {
let mut buf = [0; 1024];
let mut cursor = 0;

while cursor < 1024 {
cursor += socket.read(&mut buf[cursor..]).await?;
}s

buf
}

async/await can teach the borrow checker about these constraints.

Not all futures can error

trait Future {
type Item;

type Error; h

fn poll(&mut self, cx: task::Context) ->
Poll<Self::Item, Self::Error>;

}

std::future

pub trait Future {
type Output;

fn poll(self: Pin<&mut Self>, cx: &mut Context)
-> Poll<Self: :Output>;
}

Pinis how async/await teaches the borrow checker.

If you need a future that errors, set Output toa Result<T, E>.

.. pbut one more
thing...

What syntax for async/await?

async isnotanissue

JavaScript and C# do:

await value;

But what about ? for error handling?
await value?;

await (value?);
(await value)?;

What syntax for async/await?

What about chains of await?

(await (await value)?);

We argued and
argued and
argued and
argued and
argued and ar...

Niko Matsakis viaR. 11
Isaac Whitfield via. 25
Daboross via Rust |. 35
Nemo157 via Rust In.
Brian West via Rust. 100
Elahn lentile via R, &7

Soni via Rust Inter. 8

[rust-internals] [language design] Async-await experience reports - nikon
[rust-internals] [language design] Does "await™ truly need fixing? - Centril
[rust-internals] [language design] Pre-RFC: Add language support for glc
[rust-internals] [language design] A final proposal for await syntax - Nem
[rust-internals] [language design] A final proposal for await syntax - tkait
[rust-internals] [language design] Async / Await syntax straw poll - stever

[rust-internals] Replace async/await: dOt'aV‘ |
r/rust - Posted by u/mique

Ks - 168 Comments

async/await Syntax
r/rust - Posted by u/crame

Ks . 133 Comments

What syntax for async/await?

async {
let mut buf = [0; 1024];
let mut cursor = 0;

while cursor < 1024 {
cursor += socket.read(&mut buf[cursor..]).await?;
}s

buf
}

// no errors
future.await
// with errors
future.await?

.. there's actually
even one last
iIssue that's

popped up

.. this talk is
already long
enough

Additional Ergonomic improvements

use runtime: :net: :UdpSocket;

#[runtime: :main]

async fn main() -> std::io::Result<()> {
let mut socket = UdpSocket::bind("127.0.0.1:8080")7?;
let mut buf = vec![Ou8; 1024]:

println!("Listening on {}", socket.local_addr()?);

loop {
let (recv, peer) = socket.recv_from(&mut buf).await?;
let sent = socket.send_to(&buf[..recv], &peer).await?;
println!("Sent {} out of {} bytes to {}", sent, recv, peer);

WebAssembly?

#[wasm_bindgen]
pub fn wasm_entry(path: String, data: Data) -> Promise {
future_to_promise(async e {
let path = PathBuf::from(path);

future = JsFuture::from(data.get(path.to_str().unwrap()));
contents = future

.await

.expect("couldn't fetch page data")

.as_string()

.expect("couldnt get a string");

et response = Response {
body,
status_code: 200,
content_type,

JsValue: :from_serde(&response).map_err(|_| JsValue::from str("co

b

WebAssembly?

#[wasm_bindgen]
pub fn wasm_entry(path: String, data: Data) -> Promise {
future_to_promise(async e {
let path = PathBuf::from(path);

=t tuure = JsFuture::from(data. get(path.to_str().unwrap()));
t conten = future

.await

.expect("coulun't fetch page data")

.as_string()

.expect("couldnt get aWstring”);

et response = Response {
body,
status_code: 200,
content_type,

JsValue: :from_serde(&response).map_err(|_| JsValue::from_sc¢.‘"co

b

Promise

Future

Promise

Finally landing in
Rust 1.37

Or maybe 1.38

Finallv landing In
Rust 1.37

Or rnaybe 1.35

: without butts, dreams dry up
@withoutboats

Storm warning: comment hurricane incoming on the rust repo.
We are stabilizing async/await

[Stabilization] async/await MVP - Issue #62149 - rust-lang/rust

Stabilization target: 1.38.0 (beta cut 2019-08-15) Executive Summary
This is a proposal to stabilize a minimum viable async/await feature, ...
& github.com

7:47 AM - Jun 26, 2019 - Twitter for iPhone

29 Retweets 95 Likes

Finally landing Iin
Rust 1.38!!!11

JSON serialization Single query Multiple queries m Data updates Plaintext

Fortunes

Best (bar chart) Data table Latency Framework overhead

Best fortunes responses per second, Test environment (368 tests)

Rnk Framework Best performance (higher is better)
1 M actix-core 699,975 | ©mSmS—S——100.0%
2 M actix-pg 630,441 |, 0.1 %
3 M atreugo-prefork-quicktemplate 435,042 | N .2 %

Lesson: a
world-class

/0 system
Implementation
takes years

Lesson: different
languages have

different
constraints

Thank you!

@steveklabnik

