
Pony
How I learned to stop worrying and embrace an unproven technology



Sean T Allen
Author of Storm Applied 

Member of the Pony core team 
VP of Engineering at Sendence



Pony

Open-source, object-oriented, 
actor-model, capabilities-
secure, high-performance 
programming language

google: “pony for fintech”

type safe

memory safe - no dangling pointers or buffer overruns

exception safe - no uncaught runtime exceptions

data race free

deadlock free

native code - ahead of time compiled. llvm

c compatible




This talk is… 
The story of Pony told through the story of Wallaroo; 

the product we built with it… 



Wallaroo

High-performance, distributed 
stream processor 

High-throughput 

Low-Latency 

Consistent performance 

Resource efficient

discuss risk management, position keeping etc type systems.

lower cost of building these system

microsecond latency targets

we’ve talked to plenty of financial institutions that regularly miss their “targets”



-Sylvan Clebsch

“A programming language is just 
another tool. It’s not about syntax. 
It’s not about expressiveness. It’s 
not about paradigms or models. 

It’s about managing hard 
problems.”



Why Pony?



Why Pony?

Highly concurrent 

Predictable latency demands 

Data Safety 

“Batteries” not required

We can expand “data safety” out to mean “memory safety”



Highly Concurrent



Highly Concurrent

Actor model 

Async messaging 

Work stealing scheduler 

Mechanical sympathy

actor-model is a model of concurrency. consider it “managed threads”.

concurrency aware type system. 

lock contention, deadlocks. not a problem thanks to the actor model.


if objects are state + synchronous methods then actors are state + async.

message queue per actor.

actors have their own heap. actors are individually garbage colllected.


actor model people think “erlang” or “akka” but there are differences. don’t assume that if its in erlang that is what it means to be actor model.

type system. “let it crash”.



Predictable latencies



Predictable Latencies

No “stop the world” GC 

Per-actor heaps 

Better clustering

per actor heaps (like erlang, unlike akka)

erlang generally has "copy on message pass" semantics. copying can be slow. we want to go fast, but safely-- reference capabilities


because we have per actor heaps, there's concurrent garbage collection. the entire runtime does not stop to collect garbage.

trash day. cluster.


ORCA - there's a paper and a proof. however, we recently found a hole in the proof that is being worked on.




Data Safety



Data Safety

Reference Capabilities

reference capabilities explained: what are the types? what are the patterns they codify? : ref, iso, val, tag (there are a couple others but let's not worry about them)


anecdote about how I came to "functional" programming in the 90s. "how i learned to stop segfaulting everything"


anecdote about early struggles with reference capabilities and the "aha moment" of o god that bug would have taken so long to find.


do fast unsafe things because in this situation we can prove that its safe. that said, the compiler could be smarter in places. ¯\_(ツ)_/¯. software its a highway.



Batteries not required



Batteries not required

Small Standard Library 

C-FFI

small standard library.

c-ffi is good but... some c libraries like to do things with globals and threads that can be very bad. you can't really use those particular libraries.



Results



Results

18 month jumpstart for “free” 

Excellent performance 

More confident refactoring 

Some pain

Pony runtime has been huge win for us. Excellent performance. Didn’t need to write our own work scheduler or garbage collection.


Almost no-segfault (c-ffi is a dangerous thing)



Pain



Pain

Pre-1.0 

Compiler bugs 

Breaking changes 

Limited tooling 

Runtime knowledge required

pre-1.0, regular breaking changes (but work needed to keep up is small)


lack of tooling sometimes hurts, particularly wish there was a quickcheck for Pony


runtime knowledge (how does GC work) required to get wicked fast code




Is Pony right for you?



Is Pony right for you?

You have a hard concurrency 
problem 

You aren’t reliant on a lot of 
existing libraries 

You are willing to write “most 
everything” from scratch

Yes, if…

building to interoperate with other systems.

taking data off of real systems into real systems

you don't have to replace everything to use pony, just the parts that need to do what pony is good at



“Fintech” Questions



“Fintech” Questions

How do I shard my data? 

How do I do priority queues? 

How do I only process the most 
recent messages?

“You might have more, I’m happy to take them in general after the talk”


How do I shard my data?


Priority Queues


Only process the last message (the NBBO/market data question)



Takeaways…
Pony has a powerful, data-race free, 

concurrency-aware type system


The Pony runtime can help you solve 
hard concurrency problems


You might be able to use Pony for 
fintech in production now



Trash Day paper: 
https://www.usenix.org/system/files/conference/hotos15/

hotos15-paper-maas.pdf 

ORCA paper: 
https://www.ponylang.org/media/papers/OGC.pdf

https://www.ponylang.org/media/papers/OGC.pdf


@seantallen 
www.monkeysnatchbanana.com 

@SendenceEng 
www.sendence.com 

@ponylang 
www.ponylang.org 

#ponylang on freenode

http://www.monkeysnatchbanana.com
http://www.sendence.com
http://www.ponylang.org

