
Security	Regression
Addressing	Security	Regression	by	Unit	Testing

Christopher	Grayson
@_lavalamp



Introduction



WHOAMI

3

• ATL
• Web	development
• Academic	researcher
• Haxin’	all	the	things
• (but	I	rlllly like	networks)

• Founder
• Red	team

@_lavalamp



• Security	regression	is	a	huge
problem
• Lots	of	infrastructure	built	around	
regression	testing	already
• Let’s	leverage	all	of	that	existing	
infrastructure	to	improve	
application	security	posture	at	a	
minimal	cost	to	development	teams

WHY’S DIS

4



1. Background

2. Dynamic	Security	Test	Generation

3. Non-dynamic	Security	Test	
Generation

4. Conclusion

Agenda

5



Background



• I’ve	always	loved	breaking	into	
things,	have	been	doing	this	
professionally	since	2012
• Go	in,	break	app,	help	client	with	
remediation,	check	that	
remediation	worked	– great!
• Come	back	3-6	months	later	and	
test	again,	same	vulns are	back	
(commonly	in	the	same	places)
• Offensive	testing	is	good	at	
diagnosing	- not	solving

A Bit More on Motivation…

7



• Standard	tool	in	any	development	
team’s	toolbox
• Unit	tests	to	ensure	code	does	not	
regress	to	a	prior	state	of	instability
• Lots	of	great	tools	(especially	in	the	
CI/CD	chain)	for	ensuring	tests	are	
passing	before	deployment

Regression Testing

8



Why	not	take	the	problem	of	security	
regression	and	use	all	of	the	tools	
already	built	for	regression	testing	to	
improve	the	security	posture	of	
tested	applications?

Putting it All Together

9



• Street	Art	Around	the	World!
• Written	in	Django	(standard	
framework,	no	API,	full	post-back)
• Same	techniques	work	for	any	
programming	language	and	
framework	that	support	
introspection
• These	examples	require	a	
framework	that	has	explicit	URL	
mapping

The Demo Application

10

https://github.com/lavalamp-/security-unit-testing



Dynamic Generation



• Django	requires	users	to	write	views	
and	then	explicitly	map	these	views	
to	URL	routes	where	they	are	
served	from
• Views	come	from	a	set	of	pre-
defined	base	classes	that	support	
default	functionality	(UpdateView,	
DeleteView,	DetailView,	FormView,	
etc)

Django Registered Routes

12



• We	can	use	introspection	to	
enumerate	all	of	the	views	
registered	within	an	application
• Now	that	we	know	the	views,	how	
can	we	support	testing	functionality	
that	issues	requests	to	all	of	the	
view	functionality?
• Enter	the	Requestor class

Testing Registered Routes

13



• Requestors	mapped	to	views	they	
are	meant	to	send	requests	to	via	
Python	decorators
• Singleton	registry	contains	mapping	
of	views	to	requestors
• Importing	all	of	the	views	
automatically	establishes	all	of	the	
mappings

Requestor Registry Architecture

14



• We	now	can	enumerate	all	of	the	
views	and	access	classes	that	are	
designed	to	submit	requests	to	the	
views
• With	this	capability	we	can	
dynamically	generate	test	cases	for	
all	of	the	views	in	an	application
• Test	cases	take	view	classes	and	
HTTP	verbs	as	arguments	to	
constructors

Dynamic Test Generation

15



If	we	are	relying	on	requestor	classes	being	defined	for	all	
views,	then	let’s	test	for	it!

Testing for Requestors

16



We’ve	got	the	ability	to	test	every	known	HTTP	verb	of	every	
registered	view,	so	let’s	test	for	successful	HTTP	responses.

Testing for Denial of Service

17



Test	to	ensure	that	the	methods	supported	by	requestors	match	
the	methods	returned	by	OPTIONS	request.

Testing for Unknown Methods

18



• Tell	the	requestors	whether	or	not	the	tested	view	requires	authentication
• Can	improve	upon	this	demo	by	checking	for	inheritance	of	the	

LoginRequiredMixin
• Check	that	unauthenticated	request	is	denied

Testing for Auth Enforcement

19



Response Header Inclusion

20



We	already	built	out	requestors	based	on	the	OPTIONS	response,	so	now	
let’s	make	sure	that	the	OPTIONS	response	included	the	correct	HTTP	

verbs.

Testing for OPTIONS Accuracy

21



Test	to	ensure	that	CSRF	tokens	are	required	for	function	
invocation	on	non-idempotent	view	functionality.

Testing for CSRF Enforcement

22



• We	now	have	guarantees	that
• Our	app	contains	no	hidden	
functionality
• All	of	our	views	are	working	as	
intended	given	expected	input
• Authentication	is	being	properly	
enforced
• Security	headers	are	present
• CSRF	is	properly	protected	against

What Have We Gained?

23



• Those	guarantees	are	great	and	all,	
but	can’t	we	just	write	individual	
unit	tests	to	test	for	them?
• In	a	development	team	we	have	
multiple	people	contributing	code	
all	the	time
• Through	dynamic	generation,	these	
tests	will	automatically	be	applied	
to	all	new	views,	providing	the	
same	guarantees	to	code	that	
hasn’t	even	been	written	yet

Why Dynamic Generation?

24



• Other	things	that	we	could	write	
dynamic	tests	for
• Rate-limiting
• Fuzzing	of	all	input	values	to	
POST/PUT/PATCH/DELETE	
(introspection	into	forms	used	to	
power	the	views)
• Proper	updating,	creation,	and	
deletion	of	new	models	based	on	
input	data

Where Can We Go?

25



Testing Other Vulns



Test	for	proper	encoding	of	output	data!

Testing for Cross-site Scripting

27



Submit	two	requests	to	the	server,	one	making	the	SQL	query	match	none	and	
another	making	the	SQL	query	match	all,	test	to	see	if	the	results	match	the	

none and	all expected	responses

Testing for SQL Injection

28



Submit	malicious	input	and	see	if	HTTP	redirect	
response	redirects	to	full	URL

Testing for Open Redirects

29



Conclusion



• Initial	overhead	is	greater	than	
writing	individual	unit	tests,	but	
new	views	added	to	the	application	
also	benefit	from	the	tests
• Provide	us	with	strong	guarantees	
about	known	application	
functionality	and	basic	HTTP-based	
security	controls

Benefits of Dynamic Generation

31



• Security	guarantees	now	enforced	
by	CI/CD	integration
• Test	Driven	Development?	Great –
have	your	security	testers	write	
failing	unit	tests	that	you	then	
incorporate	into	your	test	suite
• A	new	interface	for	how	security	
and	development	teams	can	work	
together	in	harmony

Benefits of Sec. Unit Testing

32



• Security	regression	is	a	big	problem
• We	can	use	the	development	paradigm	of	regression	testing	to	address	
security	regression
• Dynamic	test	generation	can	take	us	a	long	way
• Individual	tests	for	individual	cases	further	augment	dynamic	test	generation	
capabilities

Recap

33



• Security	Unit	Testing	Project
https://github.com/lavalamp-/security-unit-testing
• Lavalamp’s Personal	Blog
https://l.avala.mp/
• Django	Web	Framework
https://www.djangoproject.com/

Resources

34



THANK YOU!

@_lavalamp
chris [AT] websight [DOT] io

github.com/lavalamp-


