
S E R V E R L E S S S E C U R I T Y A N D T H I N G S
T H AT G O B U M P I N T H E N I G H T

E R I K P E T E R S O N : @ S I LV E X I S : Q C O N N Y C 2 0 1 7

H I , I ’ M E R I K
• Co-Founder, CEO, Engineer and Coffee Machine Technician @CloudZeroInc

• Reach me @Silvexis or erik@cloudzero.com

• I’m a recovering security, product and engineering person:

• IT (UN IAEA, US Govt., SunTrust, Moody’s), Software (Sanctum, GuardedNet,
SPIDynamics, HP, Veracode)

• I’m now focused on Security as one attribute of Cloud computing and complex
system design at CloudZero

CLOUDZERO
• Our mission: Help people build, secure and operate better Cloud

applications with a focus on Serverless and Cloud Native architectures

• We provide: Radical Transparency and Contextual Insights into cloud
development, operations and security for DevOps and SRE teams

• Status: Currently in closed beta right now, request an invite at
cloudzero.com

M O R E D E V, E A S Y O P S , A L L S E C U R E

• Most important thing: We have a cloud in our logo

http://cloudzero.com

L E T S G E T T H R E E T H I N G S O U T O F T H E WAY

OK!

B U T I A M O N LY G O I N G T O TA L K A B O U T A W S T O D AY

S E R V E R L E S S I S N O T A N AW S O N LY T H I N G

….sorry ¯_(ツ)_/¯

1.

T H E C L O U D I S
NOT S O M E O N E

E L S E ’ S
C O M P U T E R

2.

FaaSS E R V E R L E S S I S
NOT FA A S

B U T FA A S I S I T S M O S T I M P O R TA N T B U I L D I N G B L O C K

3.

C L O U D I S A N O P E R AT I N G S Y S T E M

S E R V E R L E S S I S I T S N AT I V E C O D E

T H E C L O U D O S I S C O M P L E X &
S E R V E R L E S S I S I M M AT U R E

B U T L E T S N O T L E T T H AT S T O P U S

A N D T H E T O O L S F O R A S S E S S I N G T H E S E C U R I T Y
O F T H I S O S A N D S E R V E R L E S S A P P L I C AT I O N S
A R E I M M AT U R E

E M E R G E N T
I N S E C U R I T Y

You may understand your
code

BUT…

You do not understand (or
control) the forces acting on
your code

4 Horseman Of Emergent Insecurity

EPHEMERAL
ARCHITECTURES

UNPREDICTABLE
AVAILABILITY

SOFTWARE
DEFINED

EVERYTHING

CLOUD
“WEATHER”

S E R V E R L E S S A C C E L E R AT E S T H I S

T H E G O O D N E W S

• Finally, nothing to patch!

• Finally, servers can no longer be compromised!

• Finally, Denial of Service is no longer a problem!

S E R V E R L E S S S E C U R I T Y

Right?

T H E B A D N E W S

• You still need to patch your software (vulnerable code, bad
3rd party libraries)

• Stateless (serverless) compromises are now a thing (and even
harder to detect)

• Your application might* scale through that DoS, your wallet
will not

• Your attack surface is difficult to map and even harder to test

S E R V E R L E S S S E C U R I T Y

*and by might, I mean probably won’t

PAT C H Y O U R S E L F B E F O R E Y O U W R E C K
Y O U R S E L F

• If you thought you were bad at patching servers,
good news! You are worse at patching your
software :-(

• In 2016 alone 24% of the top 50 breaches were
caused by using components with known
vulnerabilities (OWASP A9)*

• Check out snyk.io, they are working to solve this
problem, but the hard work is still on your shoulders

*https://snyk.io/blog/owasp-top-10-breaches/

http://snyk.io

S TAT E L E S S C O M P R O M I S E

• Serverless is stateless so therefore the hacks now are too

• You are validating all your inputs right?

• Some examples of what not to do: 
https://github.com/Cloudzero/death-by-lambda

def hello(event, context):
 # This will be ok right?
 stuff = event['query'].get('stuff', "")
 return stuff

Y O U R N O T D O I N G T H I S … R I G H T ?

https://github.com/Cloudzero/death-by-lambda

W H AT H A S A C C E S S T O W H AT ?

• Environment variables

• Other services through IAM Permissions

• VPC, Network or Internet?

• Its own code

• Assume your function will be called by a bad
actor at some point in the future

{
 "AWS_ACCESS_KEY_ID": "<OK>",
 "AWS_DEFAULT_REGION": "us-east-1",
 "AWS_EXECUTION_ENV": "AWS_Lambda_python3.6",
 "AWS_LAMBDA_FUNCTION_MEMORY_SIZE": "1024",
 "AWS_LAMBDA_FUNCTION_NAME": "death-by-lambda-dev-hello",
 "AWS_LAMBDA_FUNCTION_VERSION": "$LATEST",
 "AWS_LAMBDA_LOG_GROUP_NAME": "/aws/lambda/death-by-lambda-dev-
hello",
 "AWS_LAMBDA_LOG_STREAM_NAME": "2017/06/27/
[$LATEST]b642962aece24609a03b10bdce7c5f00",
 "AWS_REGION": "us-east-1",
 "AWS_SECRET_ACCESS_KEY": "<YEP>",
 "AWS_SECURITY_TOKEN": “<NOPE>",
 "AWS_XRAY_CONTEXT_MISSING": "LOG_ERROR",
 "AWS_XRAY_DAEMON_ADDRESS": "169.254.79.2:2000",
 "LAMBDA_RUNTIME_DIR": "/var/runtime",
 "LAMBDA_TASK_ROOT": "/var/task",
 "LANG": "en_US.UTF-8",
 "LD_LIBRARY_PATH": "/var/lang/lib:/lib64:/usr/lib64:/var/
runtime:/var/runtime/lib:/var/task:/var/task/lib",
 "PATH": "/var/lang/bin:/usr/local/bin:/usr/bin/:/bin",
 "PYTHONPATH": “/var/runtime",
 "TZ": ":UTC",
 "_AWS_XRAY_DAEMON_ADDRESS": "169.254.79.2",
 "_AWS_XRAY_DAEMON_PORT": "2000",
 "_HANDLER": "handler.hello",
 "_X_AMZN_TRACE_ID":
"Root=1-59sdf7jf30b301ac3sdfk0sdf7sdf4ab0;Parent=57ef5sdfga3df1231;Sa
mpled=0"
}

Some Typical Env Vars:

M O S T I M P O R TA N T T H I N G Y O U C A N D O : P R A C T I C E L E A S T P R I V I L E G E

O L D V U L N S N E W L I F E

•These boring old vulnerabilities can result in 
a total AWS compromise

•CWE-918: SSRF

•CWE-611: XXE

•CWE-441: Unintended Proxy or Intermediary

•CWE-77: Command Injection

•CWE-200: Information Exposure

•Why?

•All of these can lead to unintended exposure of metadata or allow the
attacker to pivot to other parts of your AWS account

S E C U R E Y O U R (S TAT E L E S S) S E C R E T S

• Ian Haken (@ianhaken) practically wrote the book on this. Go watch his talk,
seriously, I'll wait

• https://www.youtube.com/watch?v=15H5uCj1hlE

• https://www.usenix.org/conference/enigma2017/conference-program/
presentation/haken

• TLDR; Manage your keys, leverage your cloud provider for this, don’t re-
invent the wheel, otherwise it’s turtles all the way down

R E C O M E N D AT I O N : U S E U N I Q U E S E C R E T S P E R F U N C T I O N

https://www.youtube.com/watch?v=15H5uCj1hlE
https://www.usenix.org/conference/enigma2017/conference-program/presentation/haken
https://www.usenix.org/conference/enigma2017/conference-program/presentation/haken

D E N I A L O F W A L L E T

• Now that your app scales perfectly, DoS isn’t a problem anymore right?

• What about your wallet? Can it scale perfectly?

• No problem, we will just create limits!

• Oh wait…now I have a denial of service problem

R E A L I T Y: Y O U S T I L L H AV E A D E N I A L O F S E R V I C E P R O B L E M , B U T I T ’ S
N O T S O M E T H I N G T H E N E T W O R K T E A M C A N F I X F O R Y O U

D E N I A L O F… S O M E T H I N G E L S E ?

• Think about downstream effects. Are your functions
idempotent? They should be.

• What actions do your functions trigger? Will that cost you
money or worse?

• AWS guarantees that your function will be called at
least once, not that it will be called only once

• This happens in the real world:  
https://blog.sungardas.com/CTOLabs/2017/06/run-
lambda-run/

S E R V E R L E S S AT TA C K S U R FA C E
API Gateway

Lambda Function Bad Guy?

W H AT I S Y O U R AT TA C K S U R FA C E ?

• The Serverless attack surface exists in 4 dimensions: network
controls, IAM controls, API gateway controls and time

• Think about who/what can invoke and access what, over time

• How much time did you spend defining your IAM policy vs.
writing your code?

• Least privilege has always been hard, it’s now even harder, resist
urge to take shortcuts

R E G U L A R LY A U D I T W H AT H A S A C C E S S T O W H AT V S W H AT Y O U R
S Y S T E M A C T U A L LY N E E D S A N D R E D U C E A S N E C E S S A R Y.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 }
]
}

S T O P T H I S , S T O P I T N O W

B L O C K I N G B A D A C T O R S

• Develop a close personal relationship with the AWS API Gateway

• Usage plans can define throttles and quotas against API keys

• Custom authorizers can be used to support more specialized approaches

• Use client certificates to verify the requestor if you want to go the extra mile

• Don’t forget about what happens on the inside, API gateway will not protect you
from yourself

• Someone or something pumps 10,000 events into an SNS topic wired to a lambda
function? You will near instantly hit your lambda execution limit.

• That might be ok if you only have that one lambda function, but catastrophic for a large
system

B E W A R E O F E X C E S S

• I’ve got 98 problems, Oh I know, I'll add a function!

• You now have 99 problems

• Be wary of “glue code” that solves quick problems

• Every function increases the attack surface, adds complexity, creates dependencies

• Do you have a plan to test? Deploy? Maintain? Retire?

• If you quit, will anyone even know your code is out there?

• IAM Policies tend to grow, very seldom do they contract

• How confident are you that your IAM policies are least privilege?

R A N D O M T H O U G H T:
D O I N G S E R V E R L E S S “ R A W ” I S D A N G E R O U S
• “Raw” Serverless : Using the console or CLI to push serverless code

• Both encourage exceptionally bad engineering habits

• Building secure serverless systems is fundamentally tied at the hip with good
engineering practices.

• It’s too easy to get things wrong or take shortcuts to “just get it working”

• Pretty soon you will find yourself writing bash scripts, hacking terraform and
messing with cloud formation to automate things, which brings me to my next
point…

E M B R A C E A S E R V E R L E S S D E P L O Y M E N T T O O L

• Friends don’t let friends build their own
Serverless deployment tool

• Some deployment tools are masquerading
as frameworks (cough “Serverless”) but that’s
ok

• Resit the urge. Pick the best one you can find
and then get involved improving it

• But do pick one. No one should do
Serverless “Raw”, it’s dangerous

F I N A L T H O U G H T: M O N I T O R I N G I S K I N G

• Know what your functions are supposed to do and
monitor for anomalies and unexpected behaviors

• Monitor for functions you didn’t expect

• Ask yourself: If your serverless system was
compromised how would you know?

R E M E M B E R : T H E C L O U D I S A N O S , A R E Y O U
M O N I T O R I N G I T O R J U S T Y O U R A P P L I C AT I O N S ?

M AY A L L Y O U R C L O U D S C O M E W I T H A L U C K D R A G O N
T H A N K Y O U

erik@cloudzero.com 
@silvexis

