
Skype’s Journey From P2P:
It’s Not Just About the Services

Bruce Lowekamp
People and Connections
June 27, 2018

Microsoft’s Intelligent Conversations and
Communications Cloud (IC3)

Powering Skype, Teams, and O365

Skype History
• First released in 2003
• P2P, based on Global Index originally used for KaZaa file sharing
• Chat, audio, video, file sharing, contact invites all over P2P
• Acquired by Microsoft in 2011
• Supernodes moved to datacenters
• Chat moved to (evolution of) Messenger chat service
• Calling, file-transfer, contacts, etc moved to new services
• P2P network officially being decommissioned in Fall 2018

Outline
• Original P2P architecture
• P2P compared to Modern service architecture
• Why not P2P?
• Migrating from old to new architectures
• Doing it well: Experimentation at massive client scale

Skype P2P Architecture
P2P Network formed by clients
Backend team running mostly DB-based services
Shared Library with clients (data structures, etc)

Services were thin shim on top of sharded PG SQL
PG bouncer: Transparently sharded stored procedures

LUX + DUB

P2P Contact Invites
Search for users across SNs
Send invite (signed) to target via P2P

Receive signed ack with secret.
Update local and feed to other nodes

Lazy sync to backend

High Availability in P2P
P2P Network implements HA

• Invites easily sent when both clients online
Backend forwards P2P invite

• When invitee offline
Operation completed by clients
Changes to contact list lazily synced to DB

AP

CPCAP Theorem
• P2P Network is AP
• BE DBs are CP

Breaking apart P2P Contact Changes
“Changes lazily synced to DB”
Sequence of changes sent to clients and DB
DB syncs to clients
Eventually all DB and clients see same result AP

CP

CRDT?
“J” in JCS was for Journaled

Distributed Service vs P2P Architecture

Clients

Service

Distributed DB

Storage

Contacts Contacts Contacts Contacts

CP

CP

Why not P2P?
Desktop apps no longer dominant
Servers cheap
Need to support mobile

Offline messaging, suggestions, server-side search, browser state

Business logic (and service implementation) in clients, not services

Can still do P2P media and E2E encryption in service-based systems

Migrations
Supernodes->Dedicated Supernodes->Trouter
Chat: P2P -> P2P+Griffin -> Messenger -> New Chat Service
Contacts: CBL->JCS->ABCH->PCS->EXO
Calling: P2P -> NGC
Login: Skype -> MSA

Dual-head vs Gateway

Contacts

P2P
Calling

New
Calling

P2P
Calling

New
Contacts

Contacts
Service

Contacts
Gateway

Dual-Stack: Calling and Chat

P2P
Calling

New
Calling

P2P
Calling

Calling
Service

Call Alice

Call Alice

Chat
Service

Alice: Hi Bob!

Bob: Hi Alice!

New
Chat

Alice: Hi Bob!
Bob: Hi Alice!

Technology gateway: Dual-headed with Help
P2P requires clients running continuously
Mobile devices don’t…

P2P
Calling

P2P GW

P2P
Calling

New
Calling

Call Alice

Call Alice

Push
Notifications

Gateway for Contact migrations

Contacts

New
Contacts

Contacts
Service

Contacts
Gateway

Contacts
Contacts

Migration 1
Move Contact Data

Migration 2
Update Client

Contact migrations

Contacts

New
Contacts

Contacts
Service

Contacts
Gateway

Get
Contacts

Get Contacts?

Get
Contacts?

Flags:
Migration in Progress
Migrated

Flag:
Is Master

Write Blobs
to Cache

When to migrate?

Contacts

New
Contacts

Contacts
Service

Contacts
Gateway

Contacts

Migration 1
Move Contact Data

Migration 2
Update Client

Need for Online Experimentation
Even objective metrics are a function of
• Product quality
• Seasonal/weekly effects
• User population
• Device population
• Usage scenario
These aren’t stable across new client releases

Need robust online experimentation to separate
new calling implementation from other factors.

6/26/2018 MICROSOFT CONFIDENTIAL Lync + Skype 17

Early Adopter Bias

Seasonality, Overall Trends

Experimentation – When to use A/B Testing?
When to use A/B testing:
• Making a data-driven decision about the impact of a change in the product

How is A/B testing different from "monitoring metrics before and after a change":

• A/B testing is the only valid method to draw causal inference – i.e. the changes in metric behavior cannot
be attributed to any particular change in code unless in a randomized treatment assignment (A/B testing)
setting

Why set up automated scorecards vs manually aggregating data into test statistics:
• To make sure the results are trustworthy – it is easy to be misled by data!
• To scale the experimentation so you don’t need a data scientist for every single experiment analysis
• To have a standard procedure that controls the rates of false positive/negative in long run over the entire

org

First step for getting started on experimentation:
• Data!

• Decide about which metrics are to be used for tracking the improvements - they should be aligned with T0 KPIs of the org
• Make the data available for querying with experimentation labels (e.g. knowing which each calls fell into)

• Link data to a validated scorecard

Experimentation Lifecycle

Experimentation Lifecycle, Client Edition

Experimentation Requirements
Many teams

• Self-service
• Structured Config

Configuration-centric
• Long-lived clients know what, not why

High-quality scorecards
• A&E Experimentation team evolved out of Bing

Experimentation and Configuration Service (ECS) was built to address
the flighting and configuration portion of experimentation.

Configuration-Centric View
Straightforward approach gives the client configuration describing its
situation, and client decides what to do.

ECSApplication

Presents Client Context

Relevant Configurations

Cl
ie

nt
 L

ib

ConfigValueA =
ClientLib.GetSettings(“Shutdown.
A”) ??
ClientLib.GetSettings(“Region.A”)
??
ClientLib.GetSettings(“Rollout.A”)

Configuration-Centric View
But reasons to change behavior interact
Resolving these collision manually and statically is not scalable

IF Ver>2.0 && 80% THEN A=5

IF Version>1.0 THEN A=3

IF Country=Australia THEN A=4

IF Shutdown THEN A=0

IF NOT Shutdown AND Country != Australia AND
Version>2.0 && 80% THEN A=5

IF NOT Shutdown AND Country != Australia AND !(Version
> 2.0 && 80%) AND Version>1.0 THEN A=3

IF NOT Shutdown AND Country=Australia THEN A=4

IF Shutdown THEN A=0

Configuration-Centric View
...becomes a Live-site issue
What if the Australia setup needs to be turned off? It is more
manageable to disable the precise setup

IF Ver>2.0 && 80% THEN A=5

IF Version>1.0 THEN A=3

IF Country=Australia THEN A=4

IF Shutdown THEN A=0

IF NOT Shutdown AND Country != Australia AND
Version>2.0 && 80% THEN A=5

IF NOT Shutdown AND Country != Australia AND !(Version
> 2.0 && 80%) AND Version>1.0 THEN A=3

IF NOT Shutdown AND Country=Australia THEN A=4

IF Shutdown THEN A=0

Configuration-Centric View
Applications are made to be Configurable
Applications should only be concerned on What it should be
configured to, not Why

ECSApplication

Presents Client Context

Relevant Configurations

Cl
ie

nt
 L

ib

ConfigValueA =
ClientLib.GetSettings(“A”)

Configuration-Centric View
And the reason to configure will be many
As the number of reasons scale, the reasons will collide
Need Tie-breaking Rules

ECSApplication

Presents Client Context

Relevant Configurations

Cl
ie

nt
 L

ib

ConfigValueA =
ClientLib.GetSettings(“A”)

Many Reasons to Configure:
• Experimentation

• Feature Rollouts to X%
• Regional Settings

• Exposure to User/Tenants
(Murphy/Rings)

• Live-site assistance
• Traffic Routing

• Sampling
• Any combinations (e.g. 5% of

Ring 2 in Europe)
• and many more…

Configuration-Centric View
ECS configuration approach is to provide a set of Tie-breaking rules
for users, but let the service resolve the collision dynamically

ECSApplication

Presents Client Context

Relevant Configurations

Cl
ie

nt
 L

ib

ConfigValueA =
ClientLib.GetSettings(“A”)

Value of A
INPUT: Version = 3.0, Country = US,
Shutdown = false, UserID=myuser
OUTPUT: 5

IF Ver>2.0 and 80% THEN A=5

IF Version>1.0 THEN A=3

IF Country=Australia THEN A=4

IF Shutdown THEN A=0

Configuration-Centric View

ECS

Application

Presents Client Context

Relevant Configurations

Cl
ie

nt
 L

ib

ConfigValueA =
ClientLib.GetSettings(“A”)

Experiment
Rollout

Ring-Based
Sampling

Configuration
Prioritization

(Config Merge,
Layer Order,
Priority Order) Shutdown

Default

External

……

No Client-Service Contract Change
Example: Configuration with Rings

• Decoupling who the user is from how the application is configured
• No Client-Server contract change. No Mobile re-deployment for Rings

Application
ECS

Resolves User
to Ring X

Presents Client Context (UserID, TenantID)

Relevant Configurations for Ring X

Cl
ie

nt
 L

ib

+
Ca

ch
e

Ring
Definition

(ECS)

Ring
Definition
(Partner)

Translate to
empower
ECS Ring Filters

ConfigID
Identify each experiment, rollout, default
Needed for debugging and analysis

<Type-ExpID-TreatID-Iteration>

Configuration Merge
Experiment Config

“SkypeAndroid": {
"ShortCircuit": true

}

Rollout Config
“SkypeAndroid": {

"PhoneVerification": false,
“ShortCircuit”: false

}

Merged Config
“SkypeAndroid": {

"ShortCircuit": true,
"PhoneVerification": false

}

ETag
ETag is a hash of the set of ConfigIDs being served
ETag-ConfigID mapping is forwarded to data pipeline by ECS service

Client Telemetry is logged with the ETag

Data Analysis to associate telemetry with an iteration of the treatment
• Client Telemetry.Etag
• Data Analysis.ConfigID
• Service log: Etag-ConfigID Map

Also useful for debugging client implementation

Impression-based vs Sticky
Conventional experimentation:
• Numberline assigns user to experiment. Experiment is sticky.
• Analyze impact over time

What if your experiment is more risky?
• Next-gen code frequently known not to be better (yet)
• Still need to get real-world experiment
• “Impression-based” assign at random each fetch
• No one gets broken experience for more than an hour/restart

Importance of Scorecards
Changes in important metrics

ALL metrics, not just intended by experiment

P-values of changes to confirm caused by experiment

Unanswered call UX experiment

- Higher ratio of established calls

- BUT, Call Drop Ratio is up by 0.07% overall, caused by PSTN
drops

Likely explanation: retrying a failed call on PSTN isn’t useful on a bad
network

Experiments can have unexpected consequences on other scenarios.
A scorecard capturing important metrics across all scenarios is
needed to find unintended consequences.

PSTN Calls only

ECS Today
Scale (as of 6/8/18)
479 Project Teams
Currently running:

Experiments 388
Rollouts 2.74K
Defaults 701

12.69K Complex Configs
3.83K layers (uniquely salted numberline)
~140K RPS (daily peak)

Used by Skype & Teams clients and services. Most Office apps, etc…

Lessons from Skype’s evolution
P2P
• Architecture is different, but same HA principles can be achieved
• Solved problems originally, but became a bottleneck over time
Migrations
• Config support plans for your next migration in advance
• Pick strategy based on complexity of transition
Experimentation
• Migration (and other changes) require robust experimentation
• Don’t bake in experiments: What not Why!

Acknowledgements
Many, many people at Skype and Microsoft built the systems described
here and implemented the strategies to migrate users to newer systems.

Special thanks to Eric Lau, Michael Rubin, Daniel Schneider, and the ECS
team. The E2E experimentation pipeline includes major components
developed by the Aria, A&E EXP, IC3 Media, and other partner teams.

bruce.lowekamp@skype.net
https://linkedin.com/in/brucelowekamp

