
Intro
Design

Implementation
Reliability

Lessons Learned
Summary

High Performance Cooperative Distributed
Systems in Adtech

Stan Rosenberg

VP of Engineering
Forensiq

New York, NY

QCon, New York, June 26, 2019 1/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Prebid Throughput

QCon, New York, June 26, 2019 2/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

GC Pauses

QCon, New York, June 26, 2019 3/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Failure happens all the time

Ken Arnold,

When you design distributed systems, you have to
say, "Failure happens all the time."

Fallacies of Distributed Computing (Peter Deutsch),

The network is reliable.

Latency is zero.

Bandwidth is infinite.

Transport cost is zero.

QCon, New York, June 26, 2019 4/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Past Work

QCon, New York, June 26, 2019 5/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Present Work

QCon, New York, June 26, 2019 6/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Intro

Before, Ph.D., Computer Science; Stevens, Hoboken, 2011
Advisor: David A. Naumann
Dissertation Title: Region Logic: Local Reasoning for Java
Programs and its Automation

Recently, building distributed platforms for startups
Appnexus (serving ads faster)
PlaceIQ (using location to serve ads)

VP of Engineering, Forensiq (fighting ad fraud)

QCon, New York, June 26, 2019 7/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Forensiq Overview

Comprehensive Fraud and Verification SaaS (MRC certified)

Display Verification (viewability measurements, impression
blocking)

Performance Fraud (stolen attribution, fake action)

Online scoring via Prebid, Postbid and S2S APIs

Offline scoring via request log import and reputation lists

QCon, New York, June 26, 2019 8/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Fraud Examples

QCon, New York, June 26, 2019 9/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Fraud Examples

QCon, New York, June 26, 2019 10/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Fraud Examples

QCon, New York, June 26, 2019 11/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Call for Cooperation and Collaboration

Let’s improve data quality!

provide authentic source ip
server-side ad-stitching (e.g., AWS Elemental) hides source
ip; triggers datacenter traffic
MRC notes, “data center traffic is determined to be a
consistent source of non-human traffic”.

specify location type (OpenRTB 2.5) and source to
strengthen spoofing detection

provide campaign/source (aggregate) metrics to help detect
client-side JS blocking

QCon, New York, June 26, 2019 12/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Performance Requirements (Prebid API)

high-throughput – must scale above 1 mil. RPS

low-latency – response p99 < 10ms

QCon, New York, June 26, 2019 13/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Daily Bid Volume

100 ∗ 109/86400 ≈ 1.1 ∗ 106

https://fixad.tech/wp-content/uploads/2019/02/4-appendix-on-market-saturation-of-the-systems.pdf

QCon, New York, June 26, 2019 14/39

https://fixad.tech/wp-content/uploads/2019/02/4-appendix-on-market-saturation-of-the-systems.pdf


Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Common Concerns

high-throughput low-latency
server backend 3 3

KV store 3 3

data ingest 3

ETL 3

data pipelines 3

data pipelines
Ad Serving: enrichment, budget, attribution, reporting
Fraud Detection: enrichment, scoring, reporting

QCon, New York, June 26, 2019 15/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Guiding Principles

use NIO

use compare-and-swap instead of locks (affects OOOE)

use spatial/temporal locality (prefetch,branch predict)

minimize coupling and state–keep it simple

minimize GC pressure

warmup on startup to trigger JIT

measure everything with HdrHistogram

benchmark everything with JMH and wrk2

QCon, New York, June 26, 2019 16/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Cloud is fast (enough)

modern hypervisor adds negligible overhead (< 5%)

consitent performance–“noisy neighbor” is a myth
networking – 2Gbps per core; up to 32Gbps per VM

partitions are infrequent; high inter-region throughput

local storage – NVMe SSDs; read: 300K IOPS, 2GB/sec
cloud storage – high-throughput and high-availability

strongly consistent (GCS)
fast parallel uploads via compose (GCS)

QCon, New York, June 26, 2019 17/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Mechanical Sympathy

Understanding the Hardware Makes You
a Better Developer

https://mechanical-sympathy.blogspot.com/

https://dzone.com/articles/mechanical-sympathy

https://groups.google.com/forum/#!forum/mechanical-sympathy

QCon, New York, June 26, 2019 18/39

https://mechanical-sympathy.blogspot.com/
https://dzone.com/articles/mechanical-sympathy
https://groups.google.com/forum/#!forum/mechanical-sympathy


Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Latency

Little’s Law: L = λ×W , whence throughput is ∝ 1
latency

QCon, New York, June 26, 2019 19/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Know Your Data Structures

1000 references to main memory (e.g., linear scan of linked-list)
is ≈ 100 micros; ( 1

100)× 106 = 10, 000 reqs/second

1000 references to L2 cache is ≈ 7 micros; (1
7)× 106 = 142, 857

reqs/second

linear search is slower than binary, right?

i n t cnt = 0 ;
f o r ( i n t i = 0 ; i < n ; i++)

cnt += ( ar r [ i ] < key ) ;
re turn cnt < n && arr [ cnt ] == key ;

QCon, New York, June 26, 2019 20/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Disruptor Pattern–Fast Event Processing

Disruptor is like Java’s BlockingQueue but waaaaay faster!
RingBuffer

one compare-and-swap operation to drain the queue
pair of sequence numbers for fast atomic reads/writes
exploits speculative racing to eliminate locks
consumer message batching results in high-throughput

QCon, New York, June 26, 2019 21/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Disruptor Pattern

RingBuffer is pre-allocated (data in Wrapper.message)
compact – sizeof(disruptor(524,288)) ≈ 14.5MB

QCon, New York, June 26, 2019 22/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Data Ingest & ETL

validate each request and apply (payload) limits

translate JSON to snappy-compressed Avro

use Disruptor to consume encoded Avro byte[]

append to Avro data file for current 5-min batch

upload to GCS (throttle to reduce GC pressure)

QCon, New York, June 26, 2019 23/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Avro & Snappy

16 cores, skylake
java version "1.8.0_202"
@Threads(24), @BenchmarkMode(Mode.Throughput)

Benchmark Score Error Units
encode 3741337.244 ±81494.37 ops/s
encodeCompress 2699393.673 ±40130.622 ops/s
decode 2925509.122 ±37078.569 ops/s
decodeDecompress 2771921.410 ±60483.905 ops/s

Also see zstd: https://facebook.github.io/zstd/

QCon, New York, June 26, 2019 24/39

https://facebook.github.io/zstd/


Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Data Ingest & ETL

early ETL cuts out many downstream inefficiencies

Avro’s performance is on par with Protobuf (also see below)

throttling uploads and downloads is a must to reduce GC

eliminate humongous objects (G1)

naive batching/parallel upload with compose works well

skip write-ahead log–deal with corrupted Avro blocks

Codegen makes Avro encoder 2x faster: https://github.com/RTBHOUSE/avro-fastserde

QCon, New York, June 26, 2019 25/39

https://github.com/RTBHOUSE/avro-fastserde


Intro
Design

Implementation
Reliability

Lessons Learned
Summary

KV Store–why not Aerospike?
Pros

founded in 2009 (AppNexus was first large deployment)
written in C (better resource management in theory)
uses Paxos for distributed consensus; heartbeats for node
membership
supports migrations, rebalancing
support cross-datacenter replication

Cons
No bulk loading
index can get large (RIPEMD is 20 bytes but metadata
makes it 64 bytes)
log-structured filesystem (copy-on-write); runs compaction in
background
global 32k bins limit (bins are like column qualifiers)

QCon, New York, June 26, 2019 26/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Low latency KV–Voldemort

founded in 2009 by LinkedIn (bulk loading main motivator)

written in Java

simple get/put API

uses consistent hashing (similar to Dynamo) to avoid
hotspotting

bulk loading and readonly store

index is compact – uses only 8 bytes of md5(key)

index file is mlocked

(sort of) supports rebalancing

QCon, New York, June 26, 2019 27/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Voldemort BuildAndPush

QCon, New York, June 26, 2019 28/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Voldemort Readonly Performance

QCon, New York, June 26, 2019 29/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Custom Voldemort

added BloomFilter (client-side to reduce RTT)

added Avro schema versioning

added Union datastore

TCP connection pooling is flawed

reloads create short-lived spikes (hard to pin index)

2GB limit per chunk (ByteBuffer 32bit signed addressing)
rewrite currently in progress to manage resources more
efficiently,

rewrite Voldemort backend in C++
use UDP (potentially with Aeron)
use GCS instead of HDFS

QCon, New York, June 26, 2019 30/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Putting Things Together

QCon, New York, June 26, 2019 31/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Tech. Debt

QCon, New York, June 26, 2019 32/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Top Two Diseases

Legacy and Tech. Debt are the top two diseases of any
complex software development

avoid them at all costs
Google often rewrites legacy before it’s out of control;
secondary effect,

way of transferring knowledge and ownership to newer team
members

Henderson, Fergus. "Software engineering at Google." arXiv preprint arXiv:1702.01715 (2017).

QCon, New York, June 26, 2019 33/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Rapid Reliable Iteration

can’t iterate quickly without automated verification (i.e.,
tests)

invest time into test and benchmarking fixtures early (e.g.,
write emulators)

end-to-end (integration) tests, e.g., Selenium, are must-have

instrument with metrics and measure everything

use design by contract methodology with code reviews

Design by contract was coined by Bertrand Meyer in connection with Eiffel.

QCon, New York, June 26, 2019 34/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

GCP Managed Infrastructure

distributed, highly available, strongly consistent file system
(gcs)

global latency-based load balancing

zero-downtime rolling deploy

fast scaling up/down (new instances take < 90 sec. to boot)

Bigquery (bulk loading, avro/parquet, partitioned tables)

Bigtable (hbase on steroids)

syncs (lb logs to bigquery, billing to bigquery, etc.)

https://serverfault.com/questions/881698/random-failed-to-connect-to-backend-errors-on-gce-lb

QCon, New York, June 26, 2019 35/39

https://serverfault.com/questions/881698/random-failed-to-connect-to-backend-errors-on-gce-lb


Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Cloud Tech. is mostly mature

https://github.com/googleapis/
cloud-bigtable-client/issues/1348

https://github.com/googleapis/google-cloud-java/
issues/3531

https://github.com/googleapis/google-cloud-java/
issues/3534

https://github.com/GoogleCloudPlatform/
bigdata-interop/issues/106

https://github.com/GoogleCloudPlatform/
bigdata-interop/issues/153

QCon, New York, June 26, 2019 36/39

https://github.com/googleapis/cloud-bigtable-client/issues/1348
https://github.com/googleapis/cloud-bigtable-client/issues/1348
https://github.com/googleapis/google-cloud-java/issues/3531
https://github.com/googleapis/google-cloud-java/issues/3531
https://github.com/googleapis/google-cloud-java/issues/3534
https://github.com/googleapis/google-cloud-java/issues/3534
https://github.com/GoogleCloudPlatform/bigdata-interop/issues/106
https://github.com/GoogleCloudPlatform/bigdata-interop/issues/106
https://github.com/GoogleCloudPlatform/bigdata-interop/issues/153
https://github.com/GoogleCloudPlatform/bigdata-interop/issues/153


Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Trust but Verify
cost-effective infrastructure is doable but watch out. . .
GCP bait & switch product tactics

stackdriver glb logging (free until insanely expensive)
load-balancer user-defined headers (free until . . . )
cloud armor (firewall for glb) (free until . . . )

Managed services are black boxes (with limited
observability)

DNS delegation misconfiguration was $54k over 6 months (no
metrics, logging or anomaly detection)
dataproc transient failures (no useful logging to determine
root cause)
dataproc job non-determinstically “stuck” while committing
output

QCon, New York, June 26, 2019 37/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Summary

Cloud and OSS is an extremely powerful combination

High-throughout in Cloud is fairly easy through right design
Low-latency in Cloud is achievable but takes significantly
more effort

opportunity to build a managed low-latency KV store
storage-as-a-service is still emerging–programmable SSDs

Fraud is here to stay–cooperation and collaboration with
adtech is vital

QCon, New York, June 26, 2019 38/39



Intro
Design

Implementation
Reliability

Lessons Learned
Summary

Questions?

EOF

QCon, New York, June 26, 2019 39/39


	Intro
	Design
	Implementation
	Reliability
	Lessons Learned
	Summary

