
Survival of the Fittest -
Streaming Architectures

by Michael Hansen

Today’s Talk
Is:

● Case study on adapting and evolving a
streaming ecosystem - with a focus on the
subtleties that most frameworks won’t
solve for you

● Evolving your Streaming stack requires
diplomacy and salesmanship

● Keeping the focus on your use cases and
why you do streaming in the first place.

● Importance of automation and self-service

Is not:
● An extensive comparison between current

and past streaming frameworks
● About our evolution towards the “perfect”

streaming architecture and solution
(evolution does not produce perfection!)

● Archeology

“Perfect is the enemy of good”
- Voltaire

Gilt.com
A Hudson’s Bay Company Division

•

•

What Is Gilt?

Tech Philosophy
● Autonomous Tech Teams
● Voluntary adoption
● LOSA (lot’s of small apps)
● Micro-service cosmos

Typical Traffic Pattern on Gilt.com

Batch vs. Streaming
Is batch just a special case of streaming?

Recommended reads:
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://data-artisans.com/blog/batch-is-a-special-case-of-streaming

4 Batch Cycles per Day
 (bounded data in a large window)

Micro-batch
(bounded data in a small window)

Real-time
(bounded data in a tiny window)

Gilt.com Use Cases
Must Have

● At-least-once semantics
● Metrics & Analytics

○ Near-real-time (<15 minutes)
● React-to-event

○ Real-time (< few second)
● Automation of data delivery (including all DevOps

activity)
● Self-service for producers and consumers, alike
● “Bad” data should be rejected before entering the

system
● High elasticity (you saw the traffic pattern!)

Nice-to-have, but not required

● Exactly-once semantics
● Real-time Metrics & Analysis
● Complex calculations or processing

directly on streams in real-time

Stone Age
A progression of behavioral and cultural

characteristics and changes, including the use of
wild and domestic crops and of domesticated

animals.

Brief Intro to Kafka
● Organized by Topics
● N partitions per Topic
● Producers - writers
● Consumers - readers
● Data offset controlled by Consumer

The Stone Age Data Streaming
● Apache logs - mobile and web
● `tail -f` on logs into a Kafka from a Docker container

#!/bin/bash

KAFKA_BROKERS="kafka.at.gilt.com:9092"

tail --lines=0 --follow=name --retry --quiet /var/log/httpd/access_log

/var/log/httpd/ssl_access_log | /opt/gilt/lib-kafka-console-producer/bin/produce --topic

log4gilt.clickstream.raw --batch-size 200 --kafka-brokers ${KAFKA_BROKERS}

Where bin/produce is:

exec $(dirname $0)/gjava com.giltgroupe.kafka.console.producer.Main "$@"

when position('&' in substr(substring(substr(substr(utmr, position('http://' in utmr)+6), length(split_part(substr(utmr, position('http://' in utmr)+6),'/',2))+2) from
E'[?|&]{1}'||m.keyword_2||'=.*$'),2)) > 1
 then replace(replace(split_part(substr(substr(substring(substr(substr(utmr, position('http://' in utmr)+6), length(split_part(substr(utmr, position('http://' in utmr)+6),'/',2))+2) from
E'[?|&]{1}'||m.keyword_2||'=.*$'),2), 1, position('&' in substr(substring(substr(substr(utmr, position('http://' in utmr)+6), length(split_part(substr(utmr, position('http://' in
utmr)+6),'/',2))+2) from E'[?|&]{1}'||m.keyword_2||'=.*$'),2))-1), '=', 2), '%20', ' '), '%2520', ' ')
 when position('&' in substr(substring(substr(substr(utmr, position('http://' in utmr)+6), length(split_part(substr(utmr, position('http://' in utmr)+6),'/',2))+2) from
E'[?|&]{1}'||m.keyword_2||'=.*$'),2)) <= 1
 then replace(replace(split_part(substr(substring(substr(substr(utmr, position('http://' in utmr)+6), length(split_part(substr(utmr, position('http://' in utmr)+6),'/',2))+2) from
E'[?|&]{1}'||m.keyword_2||'=.*$'),2), '=', 2), '%20', ' '), '%2520', ' ')
end as search_keyword
, m2.keyword_1 as social_referral_site(lower(cv3),'-1') = 'logged in' then 1 else 0 end as is_past_reg_wall
, case
 when position('&' in substr(substring(url from E'[?|&]{1}utm_medium=.*$'),2)) > 1
 then lower(replace(replace(split_part(substr(substr(substring(url from E'[?|&]{1}utm_medium=.*$'),2), 1, position('&' in substr(substring(url from E'[?|&]{1}utm_medium=.*$'),2))-1), '=',
2), '%20', ' '), '%2520', ' '))
 when position('&' in substr(substring(url from E'[?|&]{1}utm_medium=.*$'),2)) <= 1
 then lower(replace(replace(split_part(substr(substring(url from E'[?|&]{1}utm_medium=.*$'),2), '=', 2), '%20', ' '), '%2520', ' '))
 when length(substring(url from E'[?|&]{1}utm_campaign=.*$')) > 0 and search_engine is not null then 'cpc'::varchar
 when search_engine is not null then 'organic'::varchar
 when position('&' in substr(substring(page_referrer_page_path from E'[?|&]{1}utm_medium=.*$'),2)) > 1
 then lower(replace(replace(split_part(substr(substr(substring(page_referrer_page_path from E'[?|&]{1}utm_medium=.*$'),2), 1, position('&' in substr(substring(page_referrer_page_path from
E'[?|&]{1}utm_medium=.*$'),2))-1), '=', 2), '%20', ' '), '%2520', ' '))
 when position('&' in substr(substring(page_referrer_page_path from E'[?|&]{1}utm_medium=.*$'),2)) <= 1
 then lower(replace(replace(split_part(substr(substring(page_referrer_page_path from E'[?|&]{1}utm_medium=.*$'),2), '=', 2), '%20', ' '), '%2520', ' '))
 when length(page_referrer_host_name) > 0
, case
 when position('&' in substr(substring(url from E'[?|&]{1}utm_source=.*$'),2)) > 1
 then lower(replace(replace(split_part(substr(substr(substring(url from E'[?|&]{1}utm_source=.*$'),2), 1, position('&' in substr(substring(url from E'[?|&]{1}utm_source=.*$'),2))-1), '=',
2), '%20', ' '), '%2520', ' '))
 when position('&' in substr(substring(url from E'[?|&]{1}utm_source=.*$'),2)) <= 1
 then lower(replace(replace(split_part(substr(substring(url from E'[?|&]{1}utm_source=.*$'),2), '=', 2), '%20', ' '), '%2520', ' '))
 when position('&' in substr(substring(page_referrer_page_path from E'[?|&]{1}utm_source=.*$'),2)) > 1
 then lower(replace(replace(split_part(substr(substr(substring(page_referrer_page_path from E'[?|&]{1}utm_source=.*$'),2), 1, position('&' in substr(substring(page_referrer_page_path from
E'[?|&]{1}utm_source=.*$'),2))-1), '=', 2), '%20', ' '), '%2520', ' '))
 when position('&' in substr(substring(page_referrer_page_path from E'[?|&]{1}utm_source=.*$'),2)) <= 1
 then lower(replace(replace(split_part(substr(substring(page_referrer_page_path from E'[?|&]{1}utm_source=.*$'),2), '=', 2), '%20', ' '), '%2520', ' '))
 else search_engine
end as source
, case
 when position('&' in substr(substring(url from E'[?|&]{1}utm_term=.*$'),2)) > 1
 then lower(replace(replace(split_part(substr(substr(substring(url from E'[?|&]{1}utm_term=.*$'),2), 1, position('&' in substr(substring(url from '[?|&]{1}utm_term=.*$'),2))-1), '=', 2),
'%20', ' '), '%2520', ' '))
 when position('&' in substr(substring(url from E'[?|&]{1}utm_term=.*$'),2)) <= 1
 then lower(replace(replace(split_part(substr(substring(url from E'[?|&]{1}utm_term=.*$'),2), '=', 2), '%20', ' '), '%2520', ' '))
 when search_engine is not null then search_keyword
 when position('&' in substr(substring(page_referrer_page_path from E'[?|&]{1}utm_term=.*$'),2)) > 1
 then lower(replace(replace(split_part(substr(substr(substring(page_referrer_page_path from E'[?|&]{1}utm_term=.*$'),2), 1, position('&' in substr(substring(page_referrer_page_path from
E'[?|&]{1}utm_term=.*$'),2))-1), '=', 2), '%20', ' '), '%2520', ' '))
 when position('&' in substr(substring(page_referrer_page_path from E'[?|&]{1}utm_term=.*$'),2)) <= 1
 then lower(replace(replace(split_part(substr(substring(page_referrer_page_path from E'[?|&]{1}utm_term=.*$'),2), '=', 2), '%20', ' '), '%2520', ' '))
end as keyword

● Using convoluted SQL/MR (TeraData Aster) and
Kafka offset logging in the Data Warehouse

● Parsing of event data from URL parameters and
oddball name-value pairs - different in EVERY
single Stream!

Stone Age Stream Consumption

Bronze Age

Characterized by the (over) use of bronze,
proto-writing, and other early features of urban

civilization.

Early Streaming Architecture

tail -f Data
Warehouse

Everybody loves JSON!

● Services stream JSON directly to
Kafka topics

● Consuming straight out of Kafka
with Aster SQL/MR into a
“hard-coded” JSON parser

● Changing JSON structure/data
blows up ELT pipelines

● Not scalable in terms of
engineering man-hours

begin;

create temp table messages distribute by hash(kafka_offset) as

select * from kafka_consumer (

 on (

 select

 kafka_topic,

 kafka_partition,

 max(end_offset) + 1 as kafka_offset

 from audit.kafka_transformation_log

 where transname = 'discounts' and status = 'end'

 group by kafka_topic, kafka_partition

)

 partition by 1

 messages(10000000) -- Setting to arbitrarily large number

);

insert into raw_file.discounts

select

 kafka_partition,

 kafka_offset,

 json as kafka_payload,

 guid::uuid as guid,

 to_timestamp(updated_at, 'Dy, DD Mon YYYY HH24:MI:SS') as updated_at

from json_parser (

 on (select kafka_partition, kafka_offset, kafka_payload as json

 from messages)

 fields('updated_at', 'discount.guid as guid')

);

end:

Early State of Affairs

Life's peachy for the
data producers

The data consumer is
screaming in agony

Why do we stream data in the first place?

● To learn from our data and use that knowledge to improve our
business in a timely manner

● We want to react to things happening in our business in a “timely”
manner (“timely” may not mean “real-time”!)

● But how?
○ We make it easy to track
○ We make it easy to access
○ We make it easy to measure
○ We make it easy to analyze

● Only one in four, so not there yet...

How to make it better for our data customer?

● Data-about-data
● Programmatically-well-defined

structure
● A contract with guarantees about

the content structure
● Standardized data (de)serialization.

There’s no free lunch!
This translates into more work and discipline for the data producers

Diplomacy

● Data producers want to be agile and productive,
building whatever it is that they build, minimize
complexity, and add great value to our business in a
timely manner - fair enough!

● Data consumers wants to be able to tap into these
data sources with little or no effort, so they can
focus on the analysis or machine learning, which is
how they add value to the business - fair enough!

● How do we all get aligned all make lots of money
together!?

“Diplomacy is the art of letting
somebody else have your way”

- David Frost

The Dawn of Civilization

● It's time to exit tribalism and enter civilization
● Use diplomacy to introduce rule of law:

○ Data structures and schematization
○ (De)serialization of stream data

● Surprisingly, or maybe not, it was much harder to convince all Tech Teams to
schematize and serialize data, than it was to pick a particular protocol to use

● Lobby and work your diplomacy/salesmanship across your organization -
even if you're in a top-down hierarchical organization!

Roman Age
Rise of modern government, law, politics,

engineering, art, literature, architecture, technology,
warfare, religion, language and society.

Brief Intro to Avro - Our New Rule-of-Law
● A serialization protocol with rich data structures
● Schematized with clear evolution rules - backward and forward compatibility
● Persistent files contains schema in header
● Supports RPC
● Generic serialization - dynamic
● Specific serialization (w/ code generation) - type-safe
● Supported by several languages
● See: http://avro.apache.org/docs/current/spec.html

Naming and Standards
● Namespace indicate producer

or group of producers (micro
services)

● Ownership of these services
may change, so we tie the
naming to the services, as
opposed to, the teams

● Avro did not cover all our
needs out-of-box (1.7.x back
then)

● Extend (de)serialization and standard
schemas:

○ Money
○ UUID
○ Datetime
○ Decimal

● With 1.8.x Avro introduced “logical types”
which takes care of datetime stuff, as well
as, Decimal (with precision and scale)

Schema Management

● Things to tackle are schema evolution and
versioning

○ Avro “fingerprints” (SHA-256)

● 9 out of 10 of our use cases only need
backward compatibility

● What about breaking compatibility?
○ We decided to inject vX between namespace and

name, e.g.,
com.gilt.tapstream.v1.AddToCartEvent

● Another microservice to help with this, that
would be great...

Svc-avro-schema-registry - the Keymaster

● A Play/Scala/Akka service
● Manage all registration and lookup of

Avro schemas
● Handles versioning with Avro fingerprints

(SHA-256)
● Checks for compatibility (and rejects if

not)
● Does not support deletes (why?)
● Backed by an S3 versioned bucket

Schema Registry Api

● Deduplication of data - micro-batch - data
warehouse (at-least-once semantic
needs help!)

● Build-in timestamp
● Guarantees 10,000 unique UUIDs per

MAC address per millisecond
● But, not persistent in case of producer

failure

Injection of TimeUuid (Avro alone is not enough)
{

 "type" : "record",

 "name" : "ProductPageViewedEvent",

 "namespace" : "com.gilt.clicksteam.v1",

 "fields" : [{

 "name" : "uuid",

 "type" : {

 "type" : "fixed",

 "name" : "UUID",

 "namespace" : "gfc.avro",

 "size" : 16

 }

 }, {

 "name" : "productId",

 "type" : "long"

 }, {

 "name" : "saleId",

 "type" : ["null", "long"],

 "default" : null

 }]

}

● Used for sorting data for time series, analytics, and in ELT processes
● Extracting exact sequence of events (e.g., clickstream events)

TimeUuid - Sorting and Sequence

import java.util.{UUID, Random}

/** Based on http://www.ietf.org/rfc/rfc4122.txt */

object TimeUuid {

 private[this] val clockSeqAndNode = buildClockSeqAndNode()

 def apply(): UUID = new UUID(buildTime(Clock.time()), clockSeqAndNode)

 def apply(timeInMillis: Long): UUID = new UUID(buildTime(convertToNanos(timeInMillis)), clockSeqAndNode)

 private def convertToNanos(timeInMillis: Long): Long = (timeInMillis - Clock.StartEpoch) * 10000

 private def buildTime(time: Long): Long = {

 var msb: Long = 0L

 msb |= (0x00000000ffffffffL & time) << 32

 msb |= (0x0000ffff00000000L & time) >>> 16

 msb |= (0x0fff000000000000L & time) >>> 48

 msb |= 0x0000000000001000L //Version 1 Uuid

 msb

 }

 private def buildClockSeqAndNode(): Long = {

 val clock: Long = new Random(System.currentTimeMillis).nextLong

 var lsb: Long = 0

 lsb |= (clock & 0x0000000000003FFFL) << 48 // clock sequence (14 bits)

 lsb |= 0x8000000000000000L // variant (2 bits)

 lsb |= Node.id // 6 bytes

 lsb

 }

}

See details or clone @
https://github.com/gilt/gfc-timeuuid

Anatomy of Avro Events

[H F I N G E P R I N T _..._ A V R O B Y T E S _..._]

Position 0: header (0x81)
Position 1-32: fingerprint for schema (SHA-256)
Position 33-N: Avro record serialized to byte array

Many Small Streams or One Large River?
● At one point or another you need to decide

how to organize your streams, along the
spectrum of:

○ One stream per data type - simple write and
read, but complex DevOps

○ A single stream for all data types - easy
DevOps, but complex read

● Currently we are at the extreme of one
stream per data type

● Including schema “fingerprints” on events,
give you the option of moving towards the
other extreme of this spectrum

● In retrospect we should
have chosen a middle
ground of, say, one stream
per namespace

Dark Age
Stagnant in terms of real technological and

scientific progress.

Too embarrassing to talk about...

Tested out Hadoop and Hive as our Data
Lake for all Streaming

Renaissance
The cultural bridge between the Dark Ages and

modern history.

The Cloud
● The time we decided to scrap

Hadoop and Hive, coincided with
an overall company decision to
move to the Cloud, in our case
AWS

● S3 to the rescue - no need for an
HDFS cluster!

● Replacing Kafka with Kinesis

Intro to AWS Kinesis
● Organized by Streams
● Each stream can have N shards
● To group data by shards, a partition key is required (we use our

TimeUuid)
● Uses sequence numbers, analogous to Kafka’s offsets.
● Some of the limits:

○ The maximum payload size 1 MB
○ Describe Stream - max 10 per second
○ Get Records can retrieve up to 10 MB of data
○ 5 reads per second, up to a max total rate of 2 MB per second
○ 1,000 records writes per second for writes, up to a max of 1 MB per second

Switching to a Cloud-based Streaming Platform
● From Kafka to Kinesis - works similarly in principle, but very different

temperament
● Back-pressure - when limits are hit, Kinesis jumps into “throttling

mode” which further exacerbate backpressure
● With healthy overprovisioning on Kafka, backpressure was trivial,

just resend if bounced
● Kinesis throttle is melodramatic, so we added:

○ Hook in autoscaling for your Kinesis streams
○ Coded a robust exponential backoff strategy on clients

Creeping Cloud Costs

● Over-provision Kafka was relatively cheap,
Kinesis is not!

● Pareto Principle: 20% of you data types
accounts for 80% of your volume.

○ Not a problem in Kafka as we provision the overall
cluster

○ Problem on Kinesis low-volume streams are
under-utilized

● We had a couple of options:
○ Switch from many streams to one river
○ Implement Kinesis auto-scaling

● We went with the Kinesis autoscale option, for
now, but need to consolidate streams as well

Kinesis Stream Cost Pattern

● The majority of a Kinesis Stream cost is in
“shardhour” regardless of utilization rate!

● Example 250 records/sec @ 20 Kb (658.8 million
PUT Payload Units per month)
○ 5 shards ~$54/month
○ PUT Payload ~$10/month

● This is not to say Kafka is always more
economical, as it has significant DevOps and admin
costs that Kinesis does not have

● Know your streaming patterns & volumes! Und
er-

uti
liz

ed

The Revolt
● Data producers do not want to use Avro, they

want their JSON
● To stake off a revolt, we created a service,

svc-event, to accept JSON and Avro events
alike:

○ Compromise - JSON events still need an Avro
schema in the registry

○ JSON events are converted to Avro
○ Avro is prefixed with its schema fingerprint
○ Batch of JSON events, an array of JSONs

● svc-event is in essence a “dumb waiter”
passing on events to a streaming platform,
such as Kafka or Kinesis

Svc-event - the Gatekeeper
● A Play/Scala/Akka service
● Accepts

○ JSON Payload
○ Avro Payloads

● Rejects payload if structure does not
match the schema in store for
:streamId (streamId = schema name)

● Back-pressure handling
● Fail “bad” data at the entrance
● Check for timeuuid presence

[HFINGEPRINT_..._
AVROBYTES_..._]

Schema Registry

Industrial Age
Characterized chiefly by the replacement of hand

tools with power-driven machines and by the
concentration of industry in large establishments.

Client Code Generation - Apidoc.me
● Code generation for clients - self-service for producers

○ svc-event
○ Avro schema registry

● Support for
○ Scala
○ Go client
○ Android client
○ Node
○ Play
○ Http4
○ Ruby client

● Learn more @ http://www.apidoc.me

Better Schema Tooling
● The standard org.apache.avro.SchemaCompatibility

library is pretty useless for medium and large
schemas, as it simply throws back the entire schema
JSON for each version, no hints as to which field is
causing trouble.

● Created recursive “diff” detection to report on specific
fields, and the reason, causing the overall schema to
fail compatibility.

● Tools to upload entire Avro schema IDL Protocols,
often used in source controls as are much more
concise than their JSON-counterparts

Digital Age

What are we currently working on?

In the Works
● Tested Kinesis Analytics, but not exactly what we need:

○ Nice SQL interface
○ Feature rich with respect to time-series analytics
○ Only supports JSON and CSV, no extension hooks for binary formats
○ Does not scale well w.r.t. automatic DevOps and source code control
○ Does not feel mature yet

● Back to Spark Streaming using v2.x with Data Frames everywhere
○ Streaming and batch processes can share transformation code
○ Works great with the Data Store we are building on S3/Spark/Parquet
○ Streamline ELT across streams, files, and database replicas, alike

● Port svc-event from Akka Actors to Functional Streams for Scala (FS2),
should give a nice performance boost -> less ec2 instances -> less $$$

Better Monitoring
● Cannot always rely on the timestamp assigned in TimeUuid as the source

times may be incorrect or out of sync
● Need to inject a timestamp to incoming payloads in svc-event to precisely

trace counts within any time series
● Ability to automate hook-ins for “unusual” pattern detection on our streams

(easier said than done!)

The Future

"It's hard to make predictions -
especially about the future."

- Robert Storm Petersen

Next Evolution Step?
● Apache Flink, possibly?
● Apache Apex, no thanks!
● As a philosophical stance, we find it

anti-agile to go all-in on a single
framework or platform - platforms
comes and goes, and switching is
painful

● Find it more organic/agile to build a set
of replaceable components

Bonus
Sometimes Evolution Creates Interesting Mutations

“Good” Genetic Mutations
● Avro led to other great usages around

automation in our file batch and database
replication process.

● Everything is now streamlined around Avro
in a way that probably would not have
happened if we had implemented a
end-to-end (bloated) framework.

● Avro has become the Lingua Franca for
our data and its processing automation.

● A micro-service blasting “batch-like” payloads to streams

Unintended Consequences

mhansen@gilt.com @hbcdigitaltech.gilt.com

