THE TROUBLE WITH

OUR MARKETING SLIDE

Kirk Pepperdine

Auepl

Author of jPDM, a performance diagnostic model
Author of the original Java Performance Tuning workshop
Co-founded Clarity
Building the smart generation of performance diagnostic tooling
Bring predictability into the diagnostic process
Co-founded JCrete
The hottest unconference on the planet

Java Champion(s)

O
QL
=
>3
<

What is your performance trouble spot

INDUSTRY SURVEY

What are the
typical root causes
you most often
experience

Slow/unreliable 11.97%

third party entities
Slow database queries

AeDf

1.73% Other

435% Don't know

Excessive disk 10

38.60%
o 51.47%

Inefficient application code

Excessive network 10 | 12.87%

Excessive memory churn (10:56% o i s 755% HTTP session bloat

Equest throttling

Z.REBELLABS

TURNAROUND

AeDf

> 70% of all applications are bottlenecked

on memory

AeDf

and no,

Garbage Collection
is not a fault!!!!

DO YOU USE

O
Q
=
>3
<

DO YOU USE

AeDf

Spring Boot

DO YOU USE

AeDf

Cassandra

DO YOU USE

AeDf

Cassandra
or any big nosql solution

DO YOU USE

AeDf

Apache Spark

DO YOU USE

AeDf

Apache Spark
or any big data framework

DO YOU USE

O
QL
=
>3
<

DO YOU USE

AeDf

Log4J
or any Java logging framework

DO YOU USE

O
QL
=
>3
<

DO YOU USE

AeDf

JSON
With almost any Marshalling protocol

DO YOU USE

AeDf

ECom caching products

DO YOU USE

AeDf

ECom caching products
Hibernate

DO YOU USE

AeDf

ECom caching products
Hibernate

and so on

DO YOU USE

AeDf

ECom caching products
Hibernate

and so on

and so on

DO YOU USE

AeDf

ECom caching products
Hibernate

and so on

and so on
and so on

O
Q
=
>3
<

then you are very likely in this 70%

WAR STORIES

Reduced allocation rates from 1.8gb/secto 0

tps jumped from 400,000 to 25,000,000!!!

AeDf

Stripped all logging our of a transactional engine

Throughput jumped by a factor of 4x

Wrapped 2 logging statements in a web socket framework

Memory churn reduced by a factor of 2

ALLOCATION SITE

AeDf

Foo foo = new Foo();

N
=

forms an allocation site

0: new #2 // class java/lang/Object
254G
4: invokespecial #1 // Method java/lang/Object."<init>":()V

Allocation will (mostly) occur in Java heap
fast path
slow path

small objects maybe optimized to an on-stack allocation

JAVA HEAP

AeDf

Survivor (fo) | Tenured
}# ~ ~Java Hegh=u— *‘

Java Heap is made of;

Eden - nursery
Survivor - intermediate pool designed to delay promotion
Tenured - to hold long lived data

Each space contributes to a different set of problems

All affect GC overhead

EDEN ALLOCATIONS

KeDl

top of heap pointer

OBJECT ALLOCATION

AeDf

T top of heap pointer

Foo foo = new Foo();
Bar bar = new Bar();
byte[] array = new byte[N];

OBJECT ALLOCATION

AeDf

T’rop of heap pointfer

Foo foo = new Foo();
Bar bar = new Bar();
byte[] array = new byte[N];

OBJECT ALLOCATION

AeDf

| top of heap pointer

Bar bar = new Bar();
byte[] array = new byte[N];

OBJECT ALLOCATION

AeDf

top of heap pointer

array = new byte[N];

OBJECT ALLOCATION

AeDf

T’rop of heap pointer

In multi-threaded apps, top of heap pointer must be surrounded by barriers
single threads allocation
hot memory address

solved by stripping (Thread local allocation blocks)

TLAB ALLOCATION

AueDf

TLAB TLAB
|

TTLAB pointer TTLAB pointer T

top of heap pointer

Assume 2 threads

each thread will have it's own (set of) TLAB(s)

TLAB ALLOCATIONS

AeDf

TL A,B [s el TSR
3

TTLAB pointer TTLAB pointer T :
top of heap pointer

Thread 1 -> Foo foo = new Foo(); byte[] array = new byte[N];
byte[] doesn't fitin a TLAB
Thread 2 -> Bar bar = new Bar();

TLAB WASTE 7%

AeDf

Threshold defining when to request a new TLAB
prevent buffer overflows

waste up to 1% of a TLAB

TLAB WASTE 7%

AeDf

Allocation failure to prevent buffer overflow

some what expensive failure path

TENURED SPACE

Free List

AeDf

Allocations in tenured make use of a free list
free list allocation is ~10x the cost of bump and run
Data in tenured tends to be long lived

amount of data in tenured do affect GC pause times

PROBLEMS

High memory churn rates

AeDf

many temporary objects

PROBLEMS

High memory churn rates Quickly fill Eden

—_—
many temporary objects frequent young gc cycles

AeDf

speeds up aging
premature promotion
more frequent tenured cycles
increased copy costs
increased heap fragmentation
Allocation is quick

quick * large number = slow

REDUCING ALLOCATIONS

size of gain

> 1gb/sec

< 300mb/sec

AeDf

PROBLEMS

High memory churn rates

AeDf

many temporary objects

Large live data set size
inflated live data set size

loitering

PROBLEMS

High memory churn rates

Ae ol

many temporary objects

Large live data set size inflated scan for root times

inflated live data set size 2 17 G reduced page locality

loitering Inflated compaction times

increase copy costs

likely less space to copy too

PAUSE VS OCCUPANCY

AeDf

jClarity censum@ | Heap Occupancy After GC jClarity censum @ [e] » GC Pause Time Over Time

w T T @ PP

SYSTEM GC 16

X
® Periodic calls to System.gc() [Bt 3 £t B ; * = i) @ Periodic calls to System.ge()
CPU USAG 7| Tae ; i i ot RO i 2 g CPU USAGE
@ High kernel times : e i ¥ " - ; i 7ol & @ High kernel times
LOG INFORMATIC i Ll SEREIE | ! B i | LOG INFORMATION
@ Log duration 30 days 9 hours 18 minutes! . i) j { 21k ; @ Log duration 30 days 9 hours 18 minutes}
+ GRAPHS AND DATA : 2 i ¥ GRAPHS AND DATA
Summary i Summary
HEAP USAGE X H - il | : - - HEAP USAGE
Heap After GC I ; S 4 i i i 3 i Heap After GC
Hea,;%é?emre GC IRE t i j A IR B i 13 Heap Before GC
Tenured After GC . i i Tenured After GC
Tenured Before GC Tenured Before GC

HEAP CHURN HEAP CHURN

Usage (GBytes)

Aggregate Allocations Aggregate Allocations

Pause Time (seconds)

Allocation Rates b A b b i i i i 18 Allocation Rates

Heap Recovered 8 b i g il Heap Recovered

> o

Promoted . : | Sl & : Promoted

[
(127 FINY

PAUSE TIME i i H i iy B : >AUSE TIME

GC Pause Time - ! i g : ! . JiY] GC Pause Time
% Time in GC) Ay i | £i5 b : % Time in GC
H]
CPU Summary . IEEHH 5 CPU Summary
RN

RSS USAGE) RSS USAGH

Resident Set Size 5 Resident Set Size

GC Cause

GC Cause GC Cause
16-Sep 18-Sep 20-Sep 22-Sep 24-Sep 26-Sep 28-Sep 0-Sep 2-0ct 4-0c 6:0a 8-0ct 10-0¢ 12-0ct 14-0 16-0ct 16-Sep 1s-Sep 20-Sep 22-Sep 24-Sep 26-Sep 28-Sep 30:Sep 2:0a 4-0at s0ct 10-0a 1200 14-0a 16-0a

® System.gc() A PSFull - PSYoungGen - Heap Size olaspa 14| ® System.gc() A PSFull - PSYoungGen

PROBLEMS

High memory churn rates

AeDf

many temporary objects

Large live data set size
inflated live data set size

loitering

Unstable live data set size

memory leak

PROBLEMS

High memory churn rates

AeDf

many temporary objects

Large live data set size

inflated live data set size S u gt out of heap

space
loitering
each app thread throws an
OutOfMemoryError and
Unstable live data set size =———p terminates
memory leak JVM will shutdown with all non-

daemon threads terminate

O
Q
=
>3
<

Escape Analysis

O
Q
=
>3
<

Demo time

- — ——
-~ 3 -
£ - -
N T T o g A s S -
o e -" - '_'v TR L = i = - »
O X e ettt s, S o ‘\,‘”‘f‘t.‘
— e — - >
—_— - -y -
e ————

T — i — > - -
— - -

-— —
R — i, —— - — -

- " ——— ~ —— — —
> R e e P e, e ——
T — ™ - - -
BN — — —

—— ~ L

- — - —
- — — - ~‘ - - -

-

- -.4. -—04‘. B =

Ja va Perfo

- ___A_

——————

rman'éé

T

-..r-c

uning

Workshops

