
Two Households, 
Both Alike In Dignity

A Not-So-Tragedy of Refactoring 
Front-end APIs
Julia Nguyen - @fleurchild



Julia Nguyen
@fleurchild
Founder @ifmeorg

Storyteller @mhprompt
Organizer @wscsf

Developer @indiegogo





Prologue

● Backer Experience and Trust Team
● Tech stack

○ Back-end: Ruby on Rails
○ Front-end: Angular 1, TypeScript (recent)



Indiegogo is more 
than crowdfunding



Perk = Product?





Act I
C.R.E.A.M.







Capulets: Items and Options



Montagues: Apple Pay







Act II
An Apple. A Pay.





Too many modals!



Act III
Starcrossed Perks



All of the perks!





Act IV
A Wedding



Primary Goal





Server-side Cleanup



Serializer
Picks certain attributes from model
Serializers can be exposed from the 
controller



Resource (???)
Contains logic for dealing with 
attributes, so you don’t have duplicate 
logic between serializers



SimpleDelegator
A Ruby class that implements the 
decorator pattern.

Decorator Pattern
A design pattern that allows behaviour 
to be added to a single object without 
affecting other objects of the same class
Is an example of separation of 
concerns!



Two Perk Serializers

private_api/perk_serializer.rb

- Regular perk
- Querying methods found in the 

serializer
- Exposed in 

campaign_perks_controller.rb

private_api/commerce/perk_serializer.rb

- Perk with items and options
- Querying methods found in 

/lib/commerce/resources/perk.rb
- Exposed in 

perk_items_controller.rb

Example of duplication: shipping_fees method



- Create BasePerkSerializer to be the parent serializer for perks
- Place shared attributes
- Initialize resource (SimpleDelegator) in that serializer, don’t need a 

separate controller

Base Perk Serializer





Client-side Cleanup



Angular Architecture



js/client
A place for services 
that make API calls





One Type to Rule Them All

- Create Perk typing and related typings like PerkItem in 
js/client/perks/types.ts

- Get rid of PerkJSON and PerkFactoryPerk, replace with Perk



Settle on Attributes, Remove Duplication

- PerkFactory is sort of misleading, only calculated shipping fees

- Converted between shipping.fees and shipping_fees

- Refactor PerkFactory, eliminate shipping.fees and use shipping_fees

- Convert PerkFactory to TypeScript

- perk-factory.js was 342 lines

- Perk-factory.ts is 182 lines



A Good Fake Death!





Refactoring Front-end APIs in Summary

- Start from the server-side and move to the client-side, you will uncover more

- Use serializers! You don’t usually need all of the data!

- Consolidate serializers and remove duplication through the decorator pattern

- Model attribute names should be consistent between the server-side and client-side

- Consolidate services that make the same API calls, make them importable modules!



Act V
Postmortem





Technical Debt
Extra development work that arises 
when code that is easy to implement in 
the short run is used instead of 
applying the best overall solution

Tackling debt “as you go” reduces debt 
and prevents debt from accruing



Can’t Refactor Everything, But You Can Document It



Tackling Technical Debt in Summary

- Better to investigate technical debt at the beginning of a project than discover it later

- Account for technical debt in sprint planning, integrate it in the pull request process 
(it’s not just a backlog issue)

- Get your PM involved in the process, even if they are non-technical

- Ask lots of questions from developers who have worked with the codebase for longer 
(people skills people!)

- Tackle your refactoring in bite-sized chunks, easier to undo if you mess up



Useful Resources

Sandi Metz' Rules for Developers

Refactoring.com by Martin Fowler

"Don't reset --hard: Strategies for Tackling Large Refactors" by Siena Aguayo

"7 Design Patterns to Refactor MVC Components in Rails" by Viktoria 
Kotsurenko

"JavaScript Factory Functions vs Constructor Functions vs Classes" by Eric 
Elliott

https://robots.thoughtbot.com/sandi-metz-rules-for-developers
https://robots.thoughtbot.com/sandi-metz-rules-for-developers
https://refactoring.com/
https://refactoring.com/
https://speakerdeck.com/sienatime/dont-reset-hard-strategies-for-tackling-large-refactors
https://speakerdeck.com/sienatime/dont-reset-hard-strategies-for-tackling-large-refactors
https://www.sitepoint.com/7-design-patterns-to-refactor-mvc-components-in-rails/
https://www.sitepoint.com/7-design-patterns-to-refactor-mvc-components-in-rails/
https://www.sitepoint.com/7-design-patterns-to-refactor-mvc-components-in-rails/
https://www.sitepoint.com/7-design-patterns-to-refactor-mvc-components-in-rails/
https://medium.com/javascript-scene/javascript-factory-functions-vs-constructor-functions-vs-classes-2f22ceddf33e
https://medium.com/javascript-scene/javascript-factory-functions-vs-constructor-functions-vs-classes-2f22ceddf33e
https://medium.com/javascript-scene/javascript-factory-functions-vs-constructor-functions-vs-classes-2f22ceddf33e
https://medium.com/javascript-scene/javascript-factory-functions-vs-constructor-functions-vs-classes-2f22ceddf33e


Could tackling technical debt 
have saved Romeo + Juliet?
If the Capulets and Montagues got their shit 
together, quite possibly 

But maybe the ~*drama*~ made their 
relationship?



Let’s tackle technical debt like 
we’re Mercutio and it’s 1996
@fleurchild


