Two Households,
Both Alike In Dignity

A Not-So-Tragedy of Refactoring
Front-end APIs

Julia Nguyen - @fleurchild

Julia Nguyen
@fleurchild

Founder @ifmeorg
Storyteller @mhprompt
Organizer @wscs{
Developer @indiegogo

Ay

SHAKESPEARE’S

EO-+IULIET

I}H THE HISII'.IHMH' ﬂlEEGDH OF MOULIN lﬁﬂﬁ!

it
it Sy i bt

Prologue

e Backer Experience and Trust Team
e Tech stack
o Back-end: Ruby on Rails
o Front-end: Angular 1, TypeScript (recent)

Indiegogo is more
than crowdfunding

Perk = Product?

Short Summary

For my Spring 2016 BFA Exhibition, | presented a body of work titled "Menagerie". It
consisted of over 130 5x7" color photographs. Now, | am doing a short run of t-
shirts as a promotion for the show and as a fun thing for my art to be on!

What | Need & What You Get

The upfront printing of the shirts is close to 300 for 20+ shirts , so how we will do it
is you will reserve your shirt on IndieGogo for 16$ You will also include your shirt
size. If you want more than one, please pay the correct amount and include that

size as well.

For now, the shirts will come in one color (white) with the designs shown above on
the front and back.

$20

Shirt + a Random Print

Not only do you get one of the shirts, but |
will also include a 5"x7" print from the
Menagerie Series. If you have seen the show
and have a particular print in mind, please
let me know personally.

Act |

C.R.E.A.M.

Two Households, Both Alike In
Dignity
A Not-So-Tragedy of Refactoring Front-end APIs

admin
San Francisco, United States
About

$0 USD raised by 0 backers

0% of $9,000 flexible goal 2 months left

BACK IT

Select Your Preferences (Required)

$100 uso + Shipping Eotson

Poison
Seal your destiny!

CONTINUE TO PAYMENT

Capulets: Items and Options

$0 USD raised by 0 backers

0% of $532 flexible goal

T /y .,:}_. P obe
BTN (v

Our Story $32 usp

Watermelons
Yum!

(Introduce yourself...

Let us know if you think this campaign contains prohibited content.

Montagues: Apple Pay

Act Il

An Apple. A Pay.

Select Your Preferences (Required)

Poison

Poison
Seal your destiny!

Size: Fair)k

Size: Banshee

Size: Beast

3) Consolidate modals for Items and Options and Multiperk/Apple Pay and handle
opening/hiding more consistently

- Consolidate Ul
- Create polymorphic states on what to open/hide and which animations to display

(2) Cleanup shared data between PerkPrefsService and CampaignPerkSelection

- Data about whether a perk has items and options

(2) Refactor setPerk and updateCart in PerkPrefsServices

- Both modals need to consistently add perk to persistentCampaignCart in perkPrefsService
- Avoid modifying of variables on perkPrefs object outside of the service

(2) Refactor selectPerk and sendPerkSelectionEvent in CampaignPerkSelection

- Cleanup logic for selectPerk and selectPerkWithOptions
- Cleanup how items information is passed into sendPerkSelectionEvent

(2) Reduce and cleanup cross module dependencies

Too many modals!

Act Il

Starcrossed Perks

declare interface PerkFactoryPerk
{

id: number;

label: string;

amount: number;

description: string;

items: Perkltem[];

secret: boolean;

featured: boolean;
estimated_delivery_date: Date;
non_tax_deductible_amount:
number;

use_non_tax_deductible_amount:

boolean;

image_public_id: string;

retail_amount: number;

}

Note: Used by
Multiperk/Apple Pay

All of the perks!

export interface Perk {

id: number;

label: string;

amount: number;
retail_amount: number;
description: string;

items: Perkltem[];

secret: boolean;

featured: boolean;
estimated_delivery_date: Date;
non_tax_deductible_amount:
number;

use_non_tax_deductible_amount:

boolean;

Note: Used by Items and
Options through PerkBuilder

export declare interface
PerkJSON {
amount: number;

id: number;
label: string;

shipping_required: boolean;
shipping_fees: Fees;
items: Perkltem[];

}

Note: Used by Apple Pay
Service

Temporarily added
shipping_required and
shipping_fees to get Apple
Pay to work for ltems and
Options

Act IV

A Wedding

Primary Goal

declare interface PerkFactoryPerk
{

id: number;

label: string;

amount: number;

description: string;

items: Perkitem([];

secret: boolean;

featured: boolean;
estimated_delivery_date: Date;
non_tax_deductible_amount:
number;

use_non_tax_deductible_amount:

boolean;

perk_image_public_id: string;

retail_amount: number;

: !

Note: Used by
Multiperk/Apple Pay

export interface Perk {

id: number;

label: string;

amount: number;
retail_amount: number;
description: string;

items: Perkltem([];

secret: boolean;

featured: boolean;
estimated_delivery_date: Date;
non_tax_deductible_amount:
number;

use_non_tax_deductible_amount:
boolean;

perk_image_public_id: string;
}

Note: Used by Items and
Options through PerkBuilder

export declare interface
PerkJSON {
amount: number;

id: number;
label: string;

shipping_required: boolean;
shipping_fees: Fees;
items: Perkltem][];

}

Note: Used by Apple Pay
Service

Temporarily added
shipping_required and
shipping_fees to get Apple
Pay to work for Items and
Options

export declare interface Perk {

id: number;

label: string;

amount: number;

retail_amount: number;

description: string;

items: Perkltem[];

secret: boolean;

featured: boolean;

campaign_slug: string;
estimated_delivery_date: Date;
non_tax_deductible_amount: number;
use_non_tax_deductible_amount: boolean;
shipping_address_required: boolean;
perk_image_public_id: string;
sold_out: boolean;

shipping_fees: Fees;

perk_item_links: PerkltemLink[];

}

Server-side Cleanup

Serializer

Picks certain attributes from model
Serializers can be exposed {rom the
controller

module Api

class Resource < SimpleDelegator

include ActiveModel::Serialization

Resource (???)

Contains logic for dealing with
attributes, so you don’t have duplicate
logic between serializers

SimpleDelegator

A Ruby class that implements the
decorator pattern.

Decorator Pattern

A design pattern that allows behaviour
to be added to a single object without
alfecting other objects of the same class
[s an example of separation of
concerns!

Two Perk Serializers

private_api/perk_serializer.rb private_api/commerce/perk_serializer.rb
- Regular perk - Perk with items and options
- Querying methods found in the - Querying methods found in
serializer /lib/commerce/resources/perk.rb
- Exposed in - Exposed in
campaign_perks_controller.rb perk_items_controller.rb

Example of duplication: shipping_ fees method

Base Perk Serializer

- Create BasePerkSerializer to be the parent serializer for perks

- Place shared attributes

- Initialize resource (SimpleDelegator) in that serializer, don’t need a
separate controller

module PrivateApi
class BasePerkSerializer < ActiveModel::Serializer

attributes :id, :amount, :label, :description, :estimated_delivery_date, :featured, :non_tax_deductible_amount, :perk_image_public_id,

def initialize(object, options = {})

super(::Commerce: :Resources: :Perk.new(object), options)

end
end

end

Client-side Cleanup

Angular Architecture

N\

_a m s 4ok
Metadata D) cVEnt

jslclient

A place for services
that make API calls

8 campaign
B8 perk
B8 product

=) gogo-karma-conf.js

) index.js

E) index.js
£) perk-factory-test.js
E) perk-factory.ts

E) types.ts

import perkFactory from './perk-factory.ts';

import 'angular';

angular.module('perk.perkFactory', ['utils'])
.factory('perkFactory', perkFactory);

~olancillary®;
./perk’;
./product’;

./campaign’';

One Type to Rule Them All

- Create Perk typing and related typings like Perkltem in
js/client/perks/types.ts

- Get rid of PerkJSON and PerkFactoryPerk, replace with Perk

Settle on Attributes, Remove Duplication

- PerkFactory is sort of misleading, only calculated shipping fees

- Converted between shipping.fees and shipping_fees
- Refactor PerkFactory, eliminate shipping.fees and use shipping_fees
- Convert PerkFactory to TypeScript

- perk-factory.js was 342 lines

- Perk-factory.ts is 182 lines

A Good Fake Death!

declare interface PerkFactoryPerk
{

id: number;

label: string;

amount: number;

description: string;

items: Perkitem([];

secret: boolean;

featured: boolean;
estimated_delivery_date: Date;
non_tax_deductible_amount:
number;

use_non_tax_deductible_amount:

boolean;

perk_image_public_id: string;

retail_amount: number;

: !

Note: Used by
Multiperk/Apple Pay

export interface Perk {

id: number;

label: string;

amount: number;
retail_amount: number;
description: string;

items: Perkltem([];

secret: boolean;

featured: boolean;
estimated_delivery_date: Date;
non_tax_deductible_amount:
number;

use_non_tax_deductible_amount:
boolean;

perk_image_public_id: string;
}

Note: Used by Items and
Options through PerkBuilder

export declare interface
PerkJSON {
amount: number;

id: number;
label: string;

shipping_required: boolean;
shipping_fees: Fees;
items: Perkltem][];

}

Note: Used by Apple Pay
Service

Temporarily added
shipping_required and
shipping_fees to get Apple
Pay to work for Items and
Options

export declare interface Perk {

id: number;

label: string;

amount: number;

retail_amount: number;

description: string;

items: Perkltem[];

secret: boolean;

featured: boolean;

campaign_slug: string;
estimated_delivery_date: Date;
non_tax_deductible_amount: number;
use_non_tax_deductible_amount: boolean;
shipping_address_required: boolean;
perk_image_public_id: string;
sold_out: boolean;

shipping_fees: Fees;

perk_item_links: PerkltemLink[];

}

Refactoring Front-end APIs in Summary

- Start from the server-side and move to the client-side, you will uncover more

- Use serializers! You don’t usually need all of the data!

- Consolidate serializers and remove duplication through the decorator pattern

- Model attribute names should be consistent between the server-side and client-side

- Consolidate services that make the same API calls, make them importable modules!

ActV

Postmortem

Technical Debt

Extra development work that arises
when code that is easy to implement in
the short run is used instead of
applying the best overall solution

Tackling debt “as you go” reduces debt
and prevents debt {from accruing

Can’t Refactor Everything, But You Can Document It

3) Consolidate modals for ltems and Options and Multiperk/Apple Pay and handle

opening/hiding more consistently
- Consolidate Ul
- Create polymorphic states on what to open/hide and which animations to display

(2) Cleanup shared data between PerkPrefsService and CampaignPerkSelection

- Data about whether a perk has items and options

(2) Refactor setPerk and updateCart in PerkPrefsServices

- Both modals need to consistently add perk to persistentCampaignCart in perkPrefsService
- Avoid modifying of variables on perkPrefs object outside of the service

(2) Refactor selectPerk and sendPerkSelectionEvent in CampaignPerkSelection

- Cleanup logic for selectPerk and selectPerkWithOptions
- Cleanup how items information is passed into sendPerkSelectionEvent

(2) Reduce and cleanup cross module dependencies

Tackling Technical Debt in Summary

Better to investigate technical debt at the beginning of a project than discover it later

Account for technical debt in sprint planning, integrate it in the pull request process
(it’s not just a backlog issue)

Get your PM involved in the process, even if they are non-technical

AsKk lots of questions from developers who have worked with the codebase for longer
(people skills people!)

Tackle your refactoring in bite-sized chunks, easier to undo if you mess up

Useful Resources

Sandi Metz' Rules for Developers

Refactoring.com by Martin Fowler

"Don't reset --hard: Strategies for Tackling Large Refactors" by Siena Aguavyo

"7 Design Patterns to Refactor MVC Components in Rails" by Viktoria
Kotsurenko

"TavaScript Factory Functions vs Constructor Functions vs Classes" by Eric
Elliott

https://robots.thoughtbot.com/sandi-metz-rules-for-developers
https://robots.thoughtbot.com/sandi-metz-rules-for-developers
https://refactoring.com/
https://refactoring.com/
https://speakerdeck.com/sienatime/dont-reset-hard-strategies-for-tackling-large-refactors
https://speakerdeck.com/sienatime/dont-reset-hard-strategies-for-tackling-large-refactors
https://www.sitepoint.com/7-design-patterns-to-refactor-mvc-components-in-rails/
https://www.sitepoint.com/7-design-patterns-to-refactor-mvc-components-in-rails/
https://www.sitepoint.com/7-design-patterns-to-refactor-mvc-components-in-rails/
https://www.sitepoint.com/7-design-patterns-to-refactor-mvc-components-in-rails/
https://medium.com/javascript-scene/javascript-factory-functions-vs-constructor-functions-vs-classes-2f22ceddf33e
https://medium.com/javascript-scene/javascript-factory-functions-vs-constructor-functions-vs-classes-2f22ceddf33e
https://medium.com/javascript-scene/javascript-factory-functions-vs-constructor-functions-vs-classes-2f22ceddf33e
https://medium.com/javascript-scene/javascript-factory-functions-vs-constructor-functions-vs-classes-2f22ceddf33e

Could tackling technical debt

have saved Romeo + Juliet?

If the Capulets and Montagues got their shit
together, quite possibly

But maybe the ~*drama*~ made their
relationship?

we’re Mercutio and it’s 1996

@fleurchild

